• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DEVELOPMENT AND IMPLEMENTATION OF THE MULTI-RESOLUTION AND LOADING OF TRANSPORTATION ACTIVITIES (MALTA) SIMULATION BASED DYNAMIC TRAFFIC ASSIGNMENT SYSTEM, RECURSIVE ON-LINE LOAD BALANCE FRAMEWORK (ROLB)

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_11914_sip1_m.pdf
    Size:
    8.429Mb
    Format:
    PDF
    Download
    Author
    Villalobos, Jorge Alejandro
    Issue Date
    2011
    Keywords
    Partitioning
    Simulation
    Civil Engineering
    Dynamic Traffic Assignment
    Mesoscopic
    Advisor
    Chiu, Yi-Chang
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The Multi-resolution Assignment and Loading of Transport Activities (MALTA) system is a simulation-based Dynamic Traffic Assignment model that exploits the advantages of multi-processor computing via the use of the Message Passing Interface (MPI) protocol. Spatially partitioned transportation networks are utilized to estimate travel time via alternate routes on mega-scale network models, while the concurrently run shortest path and assignment procedures evaluate traffic conditions and re-assign traffic in order to achieve traffic assignment goals such as User Optimal and/or System Optimal conditions.Performance gain is obtained via the spatial partitioning architecture that allows the simulation domains to distribute the work load based on a specially designed Recursive On-line Load Balance model (ROLB). The ROLB development describes how the transportation network is transformed into an ordered node network which serves as the basis for a minimum cost heuristic, solved using the shortest path, which solves a multi-objective NP Hard binary optimization problem. The approach to this problem contains a least-squares formulation that attempts to balance the computational load of each of the mSim domains as well as to minimize the inter-domain communication requirements. The model is developed from its formal formulation to the heuristic utilized to quickly solve the problem. As a component of the balancing model, a load forecasting technique is used, Fast Sim, to determine what the link loading of the future network in order to estimate average future link speeds enabling a good solution for the ROLB method.The runtime performance of the MALTA model is described in detail. It is shown how a 94% reduction in runtime was achieved with the Maricopa Association of Governments (MAG) network with the use of 33 CPUs. The runtime was reduced from over 60 minutes of runtime on one machine to less than 5 minutes on the 33 CPUs. The results also showed how the individual runtimes on each of the simulation domains could vary drastically with naïve partitioning methods as opposed to the balanced run-time using the ROLB method; confirming the need to have a load balancing technique for MALTA.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Civil Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.