• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Development and Evaluation of a MODIS Vegetation Index Compositing Algorithm for Long-term Climate Studies

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_11938_sip1_m.pdf
    Size:
    13.46Mb
    Format:
    PDF
    Download
    Author
    Solano Barajas, Ramon
    Issue Date
    2011
    Keywords
    BRDF
    compositing
    MODIS
    VI
    Soil, Water & Environmental Science
    algorithm
    anomaly
    Advisor
    Huete, Alfredo R.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The acquisition of remote sensing data having an investigated quality level constitutes an important step to advance our understanding of the vegetation response to environmental factors. Spaceborne sensors introduce additional challenges that should be addressed to assure that derived findings are based on real phenomena, and not biased or misguided by instrument features or processing artifacts. As a consequence, updates to incorporate new advances and user requirements are regularly found on most cutting edge systems such as the MODIS system. In this dissertation, the objective was to design, characterize and assess any possible departure from current values, a MODIS VI algorithm for restoring the continuity 16-day 1-km product, based on the new 8-day 500-m MODIS SR product scheduled for MODIS C6. Additionally, the impact of increasing the time resolution from 16 to 8 days for the future basic MODIS C6 VI product was also assessed. The performance of the proposed algorithm was evaluated using high quality reference data and known biophysical relationships at several spatial and temporal scales. Firstly, it was evaluated using data from the ASRVN, FLUXNET-derived ecosystem GPP and an analysis of the seasonality parameters derived from current C5 and proxy C6 VI collections. The performance of the 8-day VI version was evaluated and contrasted with current 16-day using the reported correlation of the EVI with the GPP derived from CO2 flux measurements. Secondly, we performed an analysis at spatial level using entire images (or "tiles") to assess the BRDF effects on the VI product, as these can cause biases on the SR and VIs from scanning radiometers. Lastly, we evaluated the performance of the proposed algorithm for detecting inter-annual VI anomalies from long-term time series, as compared with current MODIS VI C5. For this, we analyzed the EVI anomalies from a densely vegetated evergreen region, for the period July-September (2000-2010). Results showed a high general similarity between results from both algorithms, but also systematic differences, suggesting that proposed algorithm towards C6 may represent an advance in the reduction of uncertainties for the MODIS VI product.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Soil, Water and Environmental Science
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.