OPERATIONAL DECISION MAKING IN COMPOUND ENERGY SYSTEMS USING MULTI-LEVEL MULTI PARADIGM SIMULATION BASED OPTIMIZATION
Author
Mazhari, Esfandyar M.Issue Date
2011Keywords
MULTI-LEVEL SIMULATIONMULTI PARADIGM SIMULATION
OPERATIONAL DECISION MAKING
SIMULATION BASED OPTIMIZATION
Systems & Industrial Engineering
COMPOUND ENERGY SYSTEMS
MULTI-LEVEL MULTI PARADIGM SIMULATION
Advisor
Son, Young-Jun
Metadata
Show full item recordPublisher
The University of Arizona.Rights
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.Abstract
A two level hierarchical simulation and decision modeling framework is proposed for electric power networks involving PV based solar generators, various storage, and grid connection. The high level model, from a utility company perspective, concerns operational decision making and defining regulations for customers for a reduced cost and enhanced reliability. The lower level model concerns changes in power quality and changes in demand behavior caused by customers' response to operational decisions and regulations made by the utility company at the high level. The higher level simulation is based on system dynamics and agent-based modeling while the lower level simulation is based on agent-based modeling and circuit-level continuous time modeling. The proposed two level model incorporates a simulation based optimization engine that is a combination of three meta-heuristics including Scatter Search, Tabu Search, and Neural Networks for finding optimum operational decision making. In addition, a reinforcement learning algorithm that uses Markov decision process tools is also used to generate decision policies. An integration and coordination framework is developed, which details the sequence, frequency, and types of interactions between two models. The proposed framework is demonstrated with several case studies with real-time or historical for solar insolation, storage units, demand profiles, and price of electricity of grid (i.e., avoided cost). Challenges that are addressed in case studies and applications include 1) finding a best policy, optimum price and regulation for a utility company while keeping the customers electricity quality within the accepted range, 2) capacity planning of electricity systems with PV generators, storage systems, and grid, and 3) finding the optimum threshold price that is used to decide how much energy should be bought from sold to grid to minimize the cost. Mathematical formulations, and simulation and decision modeling methodologies are presented. A grid-storage analysis is performed for arbitrage, to explore if in future it is going to be beneficial to use storage systems along with grid, with future technological improvement in storage and increasing cost of electrical energy. An information model is discussed that facilitates interoperability of different applications in the proposed hierarchical simulation and decision environment for energy systems.Type
textElectronic Dissertation
Degree Name
Ph.D.Degree Level
doctoralDegree Program
Graduate CollegeSystems & Industrial Engineering
Degree Grantor
University of ArizonaCollections
Related items
Showing items related by title, author, creator and subject.
-
An adaptive multi-dimensional Eulerian-Lagrangian finite element method for simulating advection-dispersion.Neuman, Shlomo P.; Cady, Ralph.; Maddock, Thomas; Yeh, Tian-Chyi J.; Warrick, Arthur W.; Hills, Ricahrd G. (The University of Arizona., 1989)Advection-dispersion is generally solved numerically with methods that treat the problem from one of three perspectives. These are described as the Eulerian reference, the Lagrangian reference or a combination of the two that will be referred to as Eulerian-Lagrangian. Methods that use the Eulerian-Lagrangian approach incorporate the computational power of the Lagrangian treatment of advection with the simplicity of the fixed Eulerian grid. A modified version of a relatively new adaptive Eulerian-Lagrangian finite element method is presented for the simulation of advection-dispersion. Advection is solved by an adaptive technique that automatically chooses a local solution technique based upon a criterion involving the spatial variation of the gradient of the concentration. Moving particles (the method of characteristics; MOC) are used to define the concentration field in areas with significant variation of the concentration gradient. A modified method of characteristics (MMOC) called single-step reverse particle tracking is used to treat advection in areas with fairly uniform concentration gradients. As the simulation proceeds, the adaptive technique, as needed to maintain solution accuracy and optimal simulation efficiency, adjusts the advection solution process by inserting and deleting moving particles to shift between MMOC and MOC. Dispersion is simulated by a finite element formulation that involves only symmetric and diagonal matrices. Despite evidence from other investigators that diagonalization of the mass matrix may lead to poor solutions to advection-dispersion problems, this method seems to allow "lumping" of the mass matrix by essentially decoupling advection and dispersion. Based on tests of problems with analytical solutions, the method seems capable of reliably simulating the entire range of Peclet numbers with Courant numbers that range to 15.
-
DEVELOPMENT AND IMPLEMENTATION OF THE MULTI-RESOLUTION AND LOADING OF TRANSPORTATION ACTIVITIES (MALTA) SIMULATION BASED DYNAMIC TRAFFIC ASSIGNMENT SYSTEM, RECURSIVE ON-LINE LOAD BALANCE FRAMEWORK (ROLB)Chiu, Yi-Chang; Villalobos, Jorge Alejandro; Hickman, Mark; Mirchandani, Pitu; Head, Larry; Chiu, Yi-Chang (The University of Arizona., 2011)The Multi-resolution Assignment and Loading of Transport Activities (MALTA) system is a simulation-based Dynamic Traffic Assignment model that exploits the advantages of multi-processor computing via the use of the Message Passing Interface (MPI) protocol. Spatially partitioned transportation networks are utilized to estimate travel time via alternate routes on mega-scale network models, while the concurrently run shortest path and assignment procedures evaluate traffic conditions and re-assign traffic in order to achieve traffic assignment goals such as User Optimal and/or System Optimal conditions.Performance gain is obtained via the spatial partitioning architecture that allows the simulation domains to distribute the work load based on a specially designed Recursive On-line Load Balance model (ROLB). The ROLB development describes how the transportation network is transformed into an ordered node network which serves as the basis for a minimum cost heuristic, solved using the shortest path, which solves a multi-objective NP Hard binary optimization problem. The approach to this problem contains a least-squares formulation that attempts to balance the computational load of each of the mSim domains as well as to minimize the inter-domain communication requirements. The model is developed from its formal formulation to the heuristic utilized to quickly solve the problem. As a component of the balancing model, a load forecasting technique is used, Fast Sim, to determine what the link loading of the future network in order to estimate average future link speeds enabling a good solution for the ROLB method.The runtime performance of the MALTA model is described in detail. It is shown how a 94% reduction in runtime was achieved with the Maricopa Association of Governments (MAG) network with the use of 33 CPUs. The runtime was reduced from over 60 minutes of runtime on one machine to less than 5 minutes on the 33 CPUs. The results also showed how the individual runtimes on each of the simulation domains could vary drastically with naïve partitioning methods as opposed to the balanced run-time using the ROLB method; confirming the need to have a load balancing technique for MALTA.
-
Simulating the Multi-epoch Direct Detection Technique to Isolate the Thermal Emission of the Non-transiting Hot Jupiter HD187123bBuzard, Cam; Finnerty, Luke; Piskorz, Danielle; Pelletier, Stefan; Benneke, Björn; Bender, Chad F.; Lockwood, Alexandra C.; Wallack, Nicole L.; Wilkins, Olivia H.; Blake, Geoffrey A.; et al. (IOP PUBLISHING LTD, 2020-06-04)We report the 6.5 sigma detection of water from the hot Jupiter HD187123b with a Keplerian orbital velocity K-p of 53 +/- 13 km s(-1). This high-confidence detection is made using a multi-epoch, high-resolution, cross-correlation technique, and corresponds to a planetary mass of 1.4(-0.3)(1.05) M-J and an orbital inclination of 21 degrees +/- 5 degrees. The technique works by treating the planet/star system as a spectroscopic binary and obtaining high signal-to-noise, high-resolution observations at multiple points across the planet's orbit to constrain the system's binary dynamical motion. All together, seven epochs of Keck/NIRSPEC L-band observations were obtained, with five before the instrument upgrade and two after. Using high-resolution SCARLET planetary and PHOENIX stellar spectral models, we were able to drastically increase the confidence of the detection by running simulations that could reproduce, and thus remove, the nonrandom structured noise in the final likelihood space well. The ability to predict multi-epoch results will be extremely useful for furthering the technique. Here, we use these simulations to compare three different approaches to combining the cross correlations of high-resolution spectra and find that the Zucker log(L) approach is least affected by unwanted planet/star correlation for our HD187123 data set. Furthermore, we find that the same total signal-to-noise ratio (S/N) spread across an orbit in many, lower S/N epochs rather than fewer, higher S/N epochs could provide a more efficient detection. This work provides a necessary validation of multi-epoch simulations, which can be used to guide future observations and will be key to studying the atmospheres of farther separated, non-transiting exoplanets.