• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Nanoscale Feature Composite: An Ensemble Surface for Enhancing Cardiovascular Implant Endothelialization

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_11972_sip1_m.pdf
    Size:
    3.586Mb
    Format:
    PDF
    Download
    Author
    Tran, Phat L.
    Issue Date
    2011
    Keywords
    ensemble surface
    nanoscale textured
    Biomedical Engineering
    endothelial cell
    endothelialization
    Advisor
    Yoon, Jeong-Yeol
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The establishment and maintenance of functional endothelial cells (ECs) on an engineered surface is central to tissue engineering. As the field advances, the role of cellular mechanisms, particularly the adhesive interaction between the surface of implantable devices and biological systems, becomes more relevant in both research and clinical practice. Knowledge of these interactions can address many fundamental biological questions and would provide key design parameters for medical implants. It has been shown that EC functionality and adhesivity, crucial for the re-endothelialization process, can be induced by nanotopographical modification. Therefore, the goal of this dissertation research was to develop an ensemble surface composing of nanoscale features for the enhancement of endothelial cell adhesion. Without adhesion, subsequent vital mechanism involved in cell alignment, elongation or spreading, proliferation, migration, and ECM proteins deposition will not occur.Experiments in support of this goal were broken down into three specific aims. The first aim was to characterize and develop a size-dependent self-assembly (SDSA) nanoarray of Octamer transcription factor 4 as a demonstration to the fabrication of nanoscale feature surface. This nanoparticle array platform was a pilot studied for the second aim, which was the development of an ensemble surface of nanoscale features for endothelial cell adhesion. The third aim was to evaluate and assess EC response to the ensemble surface.Hence, we developed an ensemble surface composed of nanoscale features and adhesive elements for EC adhesivity. By using shear stress as a detachment force, we demonstrated greater cell retention by the ensemble surface than uniform controls. Adhesive interactions and cellular migration through integrin expressions, which are critical to tissue development and wound healing process was also observed. Furthermore, cell viability was relatively sustainable, as indicated by the low expression of apoptotic signaling molecules. The findings presented within this dissertation research can be applicable to blood-contact medical implants and possess the potential for future clinical translation.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Biomedical Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.