Show simple item record

dc.contributor.authorKnowles, Tim
dc.contributor.authorDoerge, Thomas
dc.contributor.authorOttman, Mike
dc.contributor.authorClark, Lee
dc.contributor.editorOttman, Mikeen_US
dc.date.accessioned2012-01-19T17:16:46Z
dc.date.available2012-01-19T17:16:46Z
dc.date.issued1987-09
dc.identifier.urihttp://hdl.handle.net/10150/203805
dc.description.abstractObtaining optimal yields of spring wheat in Arizona normally requires applications of fertilizer nitrogen (N), and occasionally phosphorus (P). The University of Arizona currently recommends preplant soil tests for NO₃-N and P, plus periodic stem tissue NO₃-N analyses to predict the N and P needs of wheat. Preplant application of P within the root zone of growing plants is suggested due to the immobility of P in soils. Split applications of N broadcast to dry soil preceding irrigations are generally recommended. Collecting additional data to calibrate and refine current guidelines for interpreting soil and plant test values is an ongoing need in Arizona. An experiment was conducted at the Safford Agricultural Center during the 1986-87 crop year to evaluate the response of "Aldura" durum wheat to banded and broadcast N and P, and split applications of N on a clay loam soil testing low in NO₃-N and available P. Maximum grain yields of over 4,500 lbs./A were obtained by banding of 40 lbs. P₂O₅ /A and 32 lbs. N/A as 16-20-0 at planting and broadcasting 118 lbs. urea-N/A prior to seeding. Stem tissue NO₃-N analyses revealed that N deficient conditions prevailed throughout the growing season in all fertilizer treatments. Treatments in which the preassigned rate of N was split into three applications produced the lowest yields due to serious N deficiency early in the season. The stem NO₃-N tissue test proved accurate in predicting N status and a stem. PO₄-P tissue test seemed reliable in monitoring P nutrition of durum wheat.
dc.language.isoen_USen_US
dc.publisherCollege of Agriculture, University of Arizona (Tucson, AZ)en_US
dc.relation.ispartofseries370071en_US
dc.relation.ispartofseriesSeries P-71en_US
dc.subjectAgriculture -- Arizonaen_US
dc.subjectGrain -- Arizonaen_US
dc.subjectForage plants -- Arizonaen_US
dc.subjectBarley -- Arizonaen_US
dc.subjectOats -- Arizonaen_US
dc.subjectWheat -- Arizonaen_US
dc.subjectBarley -- Soilsen_US
dc.subjectOats -- Soilsen_US
dc.subjectWheat -- Soilsen_US
dc.subjectBarley -- Wateren_US
dc.subjectOats -- Wateren_US
dc.subjectWheat -- Wateren_US
dc.titleEffects of N and P Applications on Wheat Stem Nitrate and Phosphate Levels, and Grain Production in Graham Countyen_US
dc.typetexten_US
dc.typeArticleen_US
dc.identifier.journalForage and Grain: A College of Agriculture Reporten_US
refterms.dateFOA2018-08-18T03:16:52Z
html.description.abstractObtaining optimal yields of spring wheat in Arizona normally requires applications of fertilizer nitrogen (N), and occasionally phosphorus (P). The University of Arizona currently recommends preplant soil tests for NO₃-N and P, plus periodic stem tissue NO₃-N analyses to predict the N and P needs of wheat. Preplant application of P within the root zone of growing plants is suggested due to the immobility of P in soils. Split applications of N broadcast to dry soil preceding irrigations are generally recommended. Collecting additional data to calibrate and refine current guidelines for interpreting soil and plant test values is an ongoing need in Arizona. An experiment was conducted at the Safford Agricultural Center during the 1986-87 crop year to evaluate the response of "Aldura" durum wheat to banded and broadcast N and P, and split applications of N on a clay loam soil testing low in NO₃-N and available P. Maximum grain yields of over 4,500 lbs./A were obtained by banding of 40 lbs. P₂O₅ /A and 32 lbs. N/A as 16-20-0 at planting and broadcasting 118 lbs. urea-N/A prior to seeding. Stem tissue NO₃-N analyses revealed that N deficient conditions prevailed throughout the growing season in all fertilizer treatments. Treatments in which the preassigned rate of N was split into three applications produced the lowest yields due to serious N deficiency early in the season. The stem NO₃-N tissue test proved accurate in predicting N status and a stem. PO₄-P tissue test seemed reliable in monitoring P nutrition of durum wheat.


Files in this item

Thumbnail
Name:
370071-134-139.pdf
Size:
93.27Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record