• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Polymeric Endo-Aortic Paving (PEAP): Initial Development of a Novel Treatment for Abdominal Aortic Aneurysms

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_11112_sip1_m.pdf
    Size:
    1.680Mb
    Format:
    PDF
    Download
    Author
    Ashton, John Hardy
    Issue Date
    2010
    Keywords
    Aneurysm
    Endovascular Aneurysm Repair
    Polycaprolactone
    Polyurethane
    Thrombus
    Vascular Graft
    Advisor
    Vande Geest, Jonathan P.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Embargo
    Embargo: Release after 6/3/2012
    Abstract
    Abdominal aortic aneurysm (AAA) is a prevalent disease in developed countries. While endovascular aneurysm repair is fairly successful, it has shortcomings. Polymeric endoluminal paving and sealing is a method that has previously been developed to treat a range of diseases. Our goal is to further develop this technique to treat AAA, a process we have named polymeric endo-aortic paving (PEAP). We hypothesize that PEAP will overcome many of the limitations associated with EVAR by providing a minimally invasive treatment which can be used on patients with complicated AAA geometries and reducing incidence of migration and endoleak. Additionally, we plan to incorporate drug delivery into PEAP to improve efficacy. The purpose of this work was to evaluate a potential graft material for PEAP and to develop a thrombus mimic which will aid in further PEAP development. Blends of polycaprolactone/polyurethane (PCL/PU) were assessed by characterizing their mechanical, thermoforming, and degradation properties. PCL/PU grafts have a similar stiffness to aortic tissue and can be thermoformed at temperatures approaching 37 degrees C. Blending PCL with PU significantly reduces PCL's degradation. An anisotropic hyperelastic strain energy function was developed for the PCL/PU blends and finite element modeling (FEM) was used to show that stress reduction on the AAA wall that can be achieved by PEAP is similar to current EVAR. Stiffness varies throughout the AAA thrombus, and thrombus mimics were developed that have similar stiffness, components, and structure to native AAA thrombus.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Biomedical Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.