• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Interface Formation Between High Dielectric Permittivity Films and III-V Compound Semiconductors using HF Chemistries and Atomic Layer Deposition

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_11520_sip1_m.pdf
    Size:
    37.04Mb
    Format:
    PDF
    Download
    Author
    Lie, Fee Li
    Issue Date
    2011
    Keywords
    atomic layer deposition
    high-k
    hydrofluoric acid
    III-V
    native oxide removal
    surface chemistry
    Advisor
    Muscat, Anthony J.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Embargo
    Embargo: Release after 4/28/2013
    Abstract
    In-based III-V compound semiconductors have higher electron mobilities than either Si or Ge and direct band gaps. These properties could enable the fabrication of low power, high-speed n-channel metal oxide semiconductor field effect transistors (MOSFETs) and optoelectronics combining MOS technology with photonics. Since thermal and native oxides formed on III-V surfaces exhibit large current leakage and high densities of trap states, a key to incorporating these materials into advanced devices is the development of processing steps that form stable interfaces with dielectric layers. In this thesis, a processing flow consisting of native oxide removal using HF chemistries and deposition of high dielectric permittivity films using atomic layer deposition was investigated. Understanding the reaction mechanisms of these processes could provide the means of controlling composition and structure, yielding a desired electronic behavior. Quantitative X-ray photoelectron spectroscopy analysis of surfaces was coupled with electrical measurements on MOS capacitors of the interface quality in order to understand the nature of high-k/III-V interface defects and their repair. Ex situ liquid phase HF etching removed InSb, InAs, and InGaAs(100) native oxides and produced an Sb- or As-enriched surface, which oxidized when exposed to air. A 5 to 22 °A thick As- and Sb-rich residual oxide was left on the surface after etching and < 5 min of air exposure. The results showed that group V enrichment originated from the reduction of group V oxides by protons in the solution and the preferential reaction of HF with the group III atom of the substrate. A sub-atmospheric in situ gas phase HF/H2O process removed native oxide from InSb, InAs, and InGaAs(100) surfaces, producing an In or Ga fluoride-rich sacrificial layer. A 50 to 90% oxide removal was achieved and a 10 to 25 °A-thick overlayer consisting of mainly In and Ga fluorides was produced. The composition and morphology of the sacrificial layer were controlled by the partial pressure of H2O as well as the ratio of HF to H2O used. Water played a critical role in the process by directly participating in the etching reaction and promoting the desorption of fluoride etching products. Accumulation of thick fluoride layer at high HF to water partial pressure ratios prevented adsorption and diffusion of etchant to the buried residual oxide. When oxide was removed, HF preferentially reacted with In or Ga atoms from the substrate, enriching the surface with group III fluorides and producing approximately one monolayer of elemental group V atoms at the interface. Interface reactions occurred during atomic layer deposition of Al2O3, in which trimethylaluminum (TMA) removed surface oxides and fluorides. Chemically sharp InSb/Al2O3 and InGaAs/Al2O3 interfaces were achieved for gas phase HF-etched InSb and liquid phase HF-etched InGaAs. A ligand transfer mechanism promotes nucleation of Al2O3 and removal of III-V atoms from the sacrificial oxide and fluoride layers as volatile trimethyl indium, gallium, arsenic, and antimony. These reactions have been explained by the relative bond strength of surface and precursor metal atoms with O and F. Interaction of a InSb(100) surface with TiCl4 as a model for metal halide ALD precursors showed that similar ligand transfer reactions occured. Adsorbed chlorine from the dissociative adsorption of TiCl4 on the InSb surface at elevated temperature, however, preferentially etched In atoms from the substrate and produced a roughened surface. The quality of InGaAs/Al2O3 interfaces prepared by solvent cleaning and liquid phase HF were assesed electrically using capacitance-voltage and conductance measurements. Surface recombination velocity (SRV) values were extracted from the measurements to represent the net effect of interface defects, which includes defect density and capture cross section. The InGaAs/Al2O3 interface prepared by solvent cleaning consisted of interfacial native oxides while that etched in liquid phase HF consisted of submonolayer arsenic oxide. The two chemically contrasting interfaces, however, gave similar SRV values of 34.4±3.7 and 28.9±13.4 cm/s for native oxide and liquid phase HF prepared samples, respectively. This suggests that the presence or absence of oxides was not the only determining factor. Post Al2O3 deposition annealing in forming gas and NH3 ambient significantly improved the electrical quality for both surfaces, as shown by SRV values between 1 to 4 cm/s which is comparable to that of an ideal H-terminated Si surface. XPS analysis showed that the contribution from elemental As and Ga2O3 at the interface of both surfaces increased after annealing in forming gas and NH3, likely due to thermal or hydrogen-induced reaction between interfacial As oxide and Ga atoms in the substrate. There was no correlation between the atomic coverages of interfacial elemental As and oxides to the SRV values. High activity defects at III-V/Al2O3 interfaces are associated with interfacial dangling bonds which were passivated thermally and chemically by annealing in forming gas and NH3.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Chemical Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.