• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The Influence of Biogeography and Mating System on the Ecology of Desert Annual Plants

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_11928_sip1_m.pdf
    Size:
    2.436Mb
    Format:
    PDF
    Download
    Author
    Gerst, Katharine Laura
    Issue Date
    2011
    Keywords
    phenology
    physiology
    range position
    reproductive ecology
    Ecology & Evolutionary Biology
    desert annuals
    mating system
    Advisor
    Venable, D. Lawrence
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Embargo
    Embargo: Release after 12/05/2013
    Abstract
    A major challenge in plant ecology is in understanding how species strategies mediate interactions between the environment and fitness. Variation in niche strategies that affect phenological, physiological, and reproductive traits will allow species to partition resources differently in space and time, allowing for coexistence of many species and strategies within a community. How species differentially respond to variable environments will ultimately influence their population dynamics and geographic distribution. This dissertation approaches this topic from two perspectives: (a) examining the interaction between biogeography and variable demographic strategies in desert annual plants, and (b) examining the costs and benefits of contrasting reproductive strategies in co-occurring selfing and outcrossing desert annuals. Firstly, I tested the abundant center model to determine the role of range position on plant population dynamics. I examined how the geographic and climatic position of 13 desert annuals found at a common location, the Desert Laboratory at Tumamoc Hill in Tucson, Arizona, related to their demography over a 25-year time span. I found that species for which the Desert Laboratory was close to the center of their geographic range have less variable long-term survival and fecundity compared to species for which the Desert Laboratory was further from the center of their range. Secondly, I studied how related species with contrasting mating systems respond to variable environments to affect plant performance. In a three-year field study I investigated how inter-annual variation in plant reproductive phenology affects synchrony with pollinators and herbivores. Since selfing species are guaranteed to reproduce in the absence of pollinators, seasonal and annual variation in phenology resulted in less variable plant reproductive success compared to outcrossing species. Greater variation in reproduction in outcrossing species resulted from asynchrony in some years between plants and pollinators. In a greenhouse study examining the interaction between mating system and drought, I found that the physiological functioning and survival of outcrossing species was more strongly negatively affected by drought conditions, suggesting that selfing species have an advantage in more arid environments. These studies demonstrate how plant reproductive and physiological strategies can play a critical role in influencing fitness, population dynamics and geographic distribution.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Ecology & Evolutionary Biology
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.