Show simple item record

dc.contributor.authorHayes, A. R.
dc.contributor.authorMancino, C. F.
dc.contributor.authorForden, W. Y.
dc.contributor.authorKopec, D. M.
dc.contributor.authorPepper, I. L.
dc.contributor.editorKopec, David M.en_US
dc.date.accessioned2012-03-19T17:44:50Z
dc.date.available2012-03-19T17:44:50Z
dc.date.issued1989
dc.identifier.urihttp://hdl.handle.net/10150/216076
dc.description.abstractThis field experiment evaluated the use of secondary municipal sewage effluent for irrigation of two turfgrass species. In April 1987 common bermudagrass (Cynodon dactylon L. Pers.) was seeded to a gravelly sandy loans soil and maintained under fairway conditions. Perennial ryegrass (Loliman perenne L.) was overseeded in the fall to maintain an actively growing turf. Plots were irrigated identically with either effluent or potable water. Soil and irrigation water samples were collected periodically and analyzed for pH, electrical conductivity (EC), sodium (Na), calcium + magnesium (Ca +Mg), bicarbonates (HCO₃), nitrogen (N), phosphorus (P) and potassium (K). Effluent water was found to contain a higher sodium absorption ratio (SAR), EC and greater concentrations of all the above elements with the exception of pH. Effluent irrigation lead to significantly lower seed germination and resulted in higher EC, Na, nitrate- nitrogen (NO₃-N), P and K concentrations in soils. Turf quality was assessed by visual evaluation under four N fertilization rates in each irrigation regime. Established effluent irrigated turf did not show signs of osmotic stress with a 15-20% leaching fraction and responded to the nutrient content of this water during periods of higher irrigation rates. However, no single fertilization rate or irrigation regime consistently produced a superior turf quality. Secondary municipal sewage effluent was used successfully for turf irrigation but the greater EC, Na and nutrient content of the water need to be considered by the turf professional making management decisions.
dc.language.isoen_USen_US
dc.publisherCollege of Agriculture, University of Arizona (Tucson, AZ)en_US
dc.relation.ispartofseriesSeries P-80en_US
dc.relation.ispartofseries370080en_US
dc.subjectAgriculture -- Arizonaen_US
dc.subjectTurfgrasses -- Arizonaen_US
dc.subjectTurf management -- Arizonaen_US
dc.subjectPlants, ornamental -- Arizonaen_US
dc.subjectTurfgrasses -- Irrigationen_US
dc.titleIrrigation of Turfgrass with Secondary Municipal Sewage Effluent: Soil and Turf Aspectsen_US
dc.typetexten_US
dc.typeArticleen_US
dc.identifier.journalTurfgrass and Ornamentals Research Summaryen_US
refterms.dateFOA2018-06-23T09:39:32Z
html.description.abstractThis field experiment evaluated the use of secondary municipal sewage effluent for irrigation of two turfgrass species. In April 1987 common bermudagrass (Cynodon dactylon L. Pers.) was seeded to a gravelly sandy loans soil and maintained under fairway conditions. Perennial ryegrass (Loliman perenne L.) was overseeded in the fall to maintain an actively growing turf. Plots were irrigated identically with either effluent or potable water. Soil and irrigation water samples were collected periodically and analyzed for pH, electrical conductivity (EC), sodium (Na), calcium + magnesium (Ca +Mg), bicarbonates (HCO₃), nitrogen (N), phosphorus (P) and potassium (K). Effluent water was found to contain a higher sodium absorption ratio (SAR), EC and greater concentrations of all the above elements with the exception of pH. Effluent irrigation lead to significantly lower seed germination and resulted in higher EC, Na, nitrate- nitrogen (NO₃-N), P and K concentrations in soils. Turf quality was assessed by visual evaluation under four N fertilization rates in each irrigation regime. Established effluent irrigated turf did not show signs of osmotic stress with a 15-20% leaching fraction and responded to the nutrient content of this water during periods of higher irrigation rates. However, no single fertilization rate or irrigation regime consistently produced a superior turf quality. Secondary municipal sewage effluent was used successfully for turf irrigation but the greater EC, Na and nutrient content of the water need to be considered by the turf professional making management decisions.


Files in this item

Thumbnail
Name:
370080-047-051.pdf
Size:
64.40Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record