• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Stochastic Fire Modeling of a Montane Grassland-Forest Landscape in the Valles Caldera National Preserve, New Mexico, USA

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_11964_sip1_m.pdf
    Size:
    7.273Mb
    Format:
    PDF
    Download
    Author
    Conver, Joshua
    Issue Date
    2011
    Keywords
    Management
    Modeling
    Restoration
    Natural Resources
    Ecology
    Fire
    Advisor
    Falk, Donald A.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Montane ecosystems of the western United States have experienced dramatic changes in their fire regimes over the last 150 years. Fire behavior modeling enables understanding of how ecosystem changes have altered past fire regimes. The Valles Caldera National Preserve in the Jemez Mountains, northern New Mexico, contains one of the largest montane grasslands in North America. This area is used for multiple uses ranging from logging to grazing and recreation. These important ecosystems have experienced increased fuel loads and stem densities resulting from a century of fire exclusion and tree encroachment, resulting in potentially anomalous fire behavior. We investigated whether fire pathways tend to spread along the grassland-forest ecotone or if fire would spread directly across grasslands under extreme fire weather conditions. We used the program FlamMap to model fire behavior under a variety of weather and fuel conditions. Fire spread pathways and burn perimeters were computed for the 50th, 90th, and 99th percentiles of historic weather conditions. The results are compiled into a probability surface that represents the most parsimonious pathways of fire spread in this landscape. We found that pathways were related to the origin of ignition; fires tended to spread around the ecotone, facilitating fire spread to adjacent grasslands. These results, complemented with fire history studies in dendrochronology and empirical observations of the Las Conchas Fire in 2011, further the understanding of the role and dynamics of fire in maintaining the montane-grassland conifer ecotone, and can guide efforts to restore a landscape affected by the effects of fire exclusion.
    Type
    text
    Electronic Thesis
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Graduate College
    Natural Resources
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.