Combined Impact of Spatial Scale, Land Use, and Climate on Streamflow and Nitrogen: A Comparative Analysis
Author
Al-Lafta, HadiIssue Date
2011Keywords
HydrologyAdvisor
Meixner, Thomas
Metadata
Show full item recordPublisher
The University of Arizona.Rights
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.Abstract
Catchments of different spatial scale, land use, and climate are characterized by highly variable N fluxes. In order to understand these controls on nitrogen flux, Total Dissolved Nitrogen (TDN) budgets were quantified and analyzed for fifty seven different catchments around the world. These catchments have a wide range of spatial scales, land uses, and climates. Results demonstrate that each variable in our analysis (i.e. spatial scale, land use, and climate) imposes a specific impact on TDN yield though their impact is not similar. For example, climate is the strongest and most significant driver for TDN yield followed by catchment area and land use. Importantly, based on current study analysis, degree of perturbation of a catchment can be determined on the basis of only a few measurements of discharge and corresponding TDN concentration at a certain point (e.g. outlet of a catchment).Type
textElectronic Thesis
Degree Name
M.S.Degree Level
mastersDegree Program
Graduate CollegeHydrology