• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Three Dimensional Dynamic Response of Reinforced Concrete Bridges Under Spatially Varying Seismic Ground Motions

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_11983_sip1_m.pdf
    Size:
    4.944Mb
    Format:
    PDF
    Download
    Author
    Peña-Ramos, Carlos Enrique, 1962-
    Issue Date
    2011
    Keywords
    Pier Ductility Demands
    Simulation of seismic acceleration time histories
    Spatially Varying Ground Motion
    Three-dimensional Seismic Response of Bridges
    Civil Engineering
    Monte Carlo Simulation
    Multisoport Excitation
    Advisor
    Haldar, Achintya
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    A new methodology is proposed to perform nonlinear time domain analysis on three-dimensional reinforced concrete bridge structures subjected to spatially varying seismic ground motions. A stochastic algorithm is implemented to generate unique and correlated time history records under each bridge support to model the spatial variability effects of seismic wave components traveling in the longitudinal and transverse direction of the bridge. Three-dimensional finite element models of highway bridges with variable geometry are considered where the nonlinear response is concentrated at bidirectional plastic hinges located at the pier end zones. The ductility demand at each pier is determined from the bidirectional rotations occurring at the plastic hinges during the seismic response evaluation of the bridge models. Variability of the soil characteristics along the length of the bridge is addressed by enforcing soil response spectrum compatibility of the generated time history records and of the dynamic stiffness properties of the spring sets modeling soil rigidity at the soil-foundation interface at each support location. The results on pier ductility demand values show that their magnitude depends on the type of soil under the pier supports, the pier location and the overall length and geometry of the bridge structure. Maximum ductility demand values were found to occur in piers supported on soft soils and located around the mid span of long multi-span bridges. The results also show that pier ductility demand values in the transverse direction of the bridge can be significantly different than the values in the longitudinal direction and in some instances, the maximum value occurs in the transverse direction. Moreover, results also show that ignoring the effects of spatial variability of the seismic excitation, the pier ductility demand can be severely underestimated. Finally, results show that increasing the vertical acceleration component in the seismic wave will generate an increase in the pier axial loads, which will reduce the ductility range of the pier plastic zones. As result, even though the increase in pier ductility demand associated with the increase in the vertical acceleration component was found to be relatively small, the number piers exhibiting significant structural damage increased.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Civil Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.