• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Oxidative Removal of Implanted Photoresists and Barrier Metals in Semiconductor Processing

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_11984_sip1_m.pdf
    Size:
    12.25Mb
    Format:
    PDF
    Download
    Author
    Govindarajan, Rajkumar
    Issue Date
    2012
    Keywords
    FEOL
    Galvanic Corrosion
    HDIS
    Semicondutor Processing
    Materials Science & Engineering
    BEOL
    ECMP
    Advisor
    Raghavan, Srini
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Chemical systems containing oxidants are widely used at various stages in semiconductor processing, particularly for wet cleaning and polishing applications. This dissertation presents a series of studies related to oxidative removal of materials in the Front-End-Of-Line (FEOL) and Chemical Mechanical Planarization (CMP) processes during IC fabrication. In the first part of this study, stripping of photoresists exposed to high dose of ions (1E16 As/cm²) was investigated in activated hydrogen peroxide systems. Stripping of photoresists (PR) exposed to high dose (>1E15/cm²) ion beams is one of the most challenging steps in FEOL processing. This is due to unreactive crust layer that forms on the resist surface during ion implantation. The use of hydrogen peroxide systems activated by metal ion or UV light, for disrupting crust formed on deep UV resist to enable complete removal of crust as well as underlying photoresist was investigated. A systematic evaluation of variables such as hydrogen peroxide and metal ion concentration, UV intensity, temperature and time was conducted and an optimal formulation capable of attacking the crust was developed. A two step process involving pretreatment with activated hydrogen peroxide solution, followed by treatment with sulfuric acid-hydrogen peroxide mixture (SPM) was developed for complete removal of crusted resist films. In the second part of this study, electrochemically enhanced abrasive removal of Ta/TaN films was investigated in solutions containing 2,5 dihydroxy benzene sulfonic acid (DBSA) and potassium iodate (KIO₃). This method known as Electrically-assisted Chemical Mechanical Planarization (ECMP) is generating a lot of interest in IC manufacturing. Ta/TaN films were abraded at low pressures (<0.5 psi) on a polyurethane pad under galvanostatic conditions. The effect of variables including pH, KIO3 concentration, and current density has been explored. In the optimized formulation, tantalum and tantalum nitride removal rates of ~170 A⁰/min and ~200 A⁰/min, respectively have been obtained at a current density of 1 mA/cm². The use of benzotriazole as a copper inhibitor was required to obtain Ta to Cu selectivity of 0.8:1. Additionally, the nature of the oxide film formed on tantalum during the electrochemical abrasion process was characterized.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Materials Science & Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.