• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Sorption Kinetics of Hydrophobic Organic Compounds onto Organic Modified Surfaces

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_hy_e9791_1988_549_sip1_w.pdf
    Size:
    4.419Mb
    Format:
    PDF
    Download
    Author
    Szecsödy, James Edward
    Issue Date
    1988
    Keywords
    Hydrology.
    Organic compounds -- Absorption and adsorption.
    Soils -- Organic compound content.
    Advisor
    Bales, Roger C.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The sorption of five chlorinated benzenes and sixteen other organic solutes was investigated by determining the extent of sorption and the sorption rates in a series of 40 batch and 139 column experiments using surface-modified silica of known chemical composition. These surfaces were used to represent important functional groups in soil, and consisted of porous silica with patchy surface coatings of aliphatic chains (C₁, C₈, and C₁₈), and other substituent groups (phenyl, amine, alcoholic, and carboxylic). Three possible rate-limiting steps were examined: diffusion through immobile pore fluid, diffusion through bound organic matter, and the chemical binding and release rate. First-order desorption rate coefficients were observed to be 10⁻¹ to 10⁻² s⁻¹ on unbonded, and C₈, C₁₈, amine, and alcoholic modified surfaces, and 10⁻³ to 10⁻⁵ s⁻¹ on C₁ and phenyl-polymer modified surfaces. Diffusion through immobile pore fluid had only a minor effect on the sorption rate, as evidenced by similar rates on organic-bound porous and solid particles. The diffusion rate through the bound organic layer is not rate limiting due to the small organic layer thickness. The observed slow desorption on the phenyl-polymer surface is consistent with the rate limiting step being the chemical binding and release rate. The changes in the rate with temperature and within a series of chlorinated benzenes support this conclusion. The free energies for sorption onto the phenyl-polymer surface ranged from -4.0 kcal mol⁻¹ for chlorobenzene to -6.9 kcal mol⁻¹ for pentachlorobenzene, which are within the range expected for van der Waals interactions. The observed sorption energies are slightly stronger than predicted for hydrophobic surfaces, possibly reflecting strong binding due to multiple pi-pi electron interactions on the phenyl-polymer surface. Hydrophobic solute partitioning onto natural soils, as observed by others, is less than that observed on aliphatic and phenyl hydrophobic surfaces in this study, but greater than on amine or alcoholic modified surfaces. The sorption of di-, tri-, and tetra-chlorobenzenes onto the phenyl-polymer surface is apparently driven by the overall sorption enthalpy (ΔH° = -3.9 to -4.9 kcal mo1⁻¹) and to a lesser extent by the entropy (TΔS° = 0.5 to 1.5 kcal mol⁻¹). As equilibrium of the reactions observed in this study are reached within hours, these reactions are important at small field scales where residence times are hundreds of hours or less.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Hydrology
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.