• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Relation of Physical Fitness to Brain Aging and Cognition in Older Adults

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_11679_sip1_m.pdf
    Size:
    1.144Mb
    Format:
    PDF
    Download
    Author
    Hanson, Krista D.
    Issue Date
    2012
    Keywords
    fitness
    gray matter
    MRI
    multivariate
    Psychology
    aging
    cognition
    Advisor
    Alexander, Gene E.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Level of physical fitness may be an important factor influencing the effects of brain aging and age-related cognitive decline. Multiple measures of aerobic fitness were used in a cohort of healthy older adults 50-89 years of age to identify how individual differences in fitness relate to brain aging and age-associated cognitive decline. Healthy adults (n=123; 65 F and 58 M; mean ± sd age = 67.9 ± 10.0; Mini-Mental State Exam = 29.1 ± 1.2) were screened to exclude neurological, psychiatric, and medical illnesses that could affect cognitive function, including hypertension. The Scaled Subprofile Model (SSM) with voxel-based morphometry and Statistical Parametric Mapping version 8 (VBM; SPM8 Dartel) were performed on T1-weighted 3T volumetric magnetic resonance imaging (MRI) scans to identify a gray matter pattern associated with brain aging. Performance on aerobic fitness measures, assessed during a graded exercise treadmill test (GXT), was evaluated in relation to the age-associated MRI gray matter network pattern and indices of neuropsychological function. Multivariate SSM VBM network analysis identified a linear combination of patterns that predicted age (R² = 0.48, p = 8.71e-19). This combined pattern was characterized by reductions in bilateral lateral and medial frontal, parietal, lateral temporal, and cerebellar regions with relative preservations in thalamic, occipital, and medial temporal regions including the hippocampus. Higher expression of the age-related network pattern was associated with poorer performance on multiple fitness indices. The best combination of fitness measures in predicting brain aging included overall treadmill exercise time, ventilatory efficiency, and the difference between basal and maximal respiratory rate (p = 6.67e-7). A higher combined fitness index score related to brain aging was associated with better performance on measures of memory, executive function, and processing speed in this cohort (6.08e-9≤ p≤ 0.05). Those individuals with higher levels of aerobic fitness had lower expression of the gray matter brain aging pattern and better performance on measures of memory, executive function, and processing speed. Identifying those fitness indices that are the best predictors of brain aging and cognitive performance may aid efforts in developing and evaluating exercise based interventions for age-related cognitive decline.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Psychology
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.