• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Machine Learning Methods for Articulatory Data

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_12138_sip1_m.pdf
    Size:
    5.768Mb
    Format:
    PDF
    Download
    Author
    Berry, Jeffrey James
    Issue Date
    2012
    Keywords
    Conditional Random Fields
    Deep Belief Networks
    Machine Learning
    Ultrasound Imaging
    Linguistics
    Articulatory Speech Data
    Automatic Speech Recognition
    Advisor
    Archangeli, Diana B.
    Fasel, Ian R.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Humans make use of more than just the audio signal to perceive speech. Behavioral and neurological research has shown that a person's knowledge of how speech is produced influences what is perceived. With methods for collecting articulatory data becoming more ubiquitous, methods for extracting useful information are needed to make this data useful to speech scientists, and for speech technology applications. This dissertation presents feature extraction methods for ultrasound images of the tongue and for data collected with an Electro-Magnetic Articulograph (EMA). The usefulness of these features is tested in several phoneme classification tasks. Feature extraction methods for ultrasound tongue images presented here consist of automatically tracing the tongue surface contour using a modified Deep Belief Network (DBN) (Hinton et al. 2006), and methods inspired by research in face recognition which use the entire image. The tongue tracing method consists of training a DBN as an autoencoder on concatenated images and traces, and then retraining the first two layers to accept only the image at runtime. This 'translational' DBN (tDBN) method is shown to produce traces comparable to those made by human experts. An iterative bootstrapping procedure is presented for using the tDBN to assist a human expert in labeling a new data set. Tongue contour traces are compared with the Eigentongues method of (Hueber et al. 2007), and a Gabor Jet representation in a 6-class phoneme classification task using Support Vector Classifiers (SVC), with Gabor Jets performing the best. These SVC methods are compared to a tDBN classifier, which extracts features from raw images and classifies them with accuracy only slightly lower than the Gabor Jet SVC method.For EMA data, supervised binary SVC feature detectors are trained for each feature in three versions of Distinctive Feature Theory (DFT): Preliminaries (Jakobson et al. 1954), The Sound Pattern of English (Chomsky and Halle 1968), and Unified Feature Theory (Clements and Hume 1995). Each of these feature sets, together with a fourth unsupervised feature set learned using Independent Components Analysis (ICA), are compared on their usefulness in a 46-class phoneme recognition task. Phoneme recognition is performed using a linear-chain Conditional Random Field (CRF) (Lafferty et al. 2001), which takes advantage of the temporal nature of speech, by looking at observations adjacent in time. Results of the phoneme recognition task show that Unified Feature Theory performs slightly better than the other versions of DFT. Surprisingly, ICA actually performs worse than running the CRF on raw EMA data.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Linguistics
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.