• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Oxidative DNA Damage and DNA Binding Induced by 2, 2-Bis (Bromomethyl)-1, 3-Propanediol: Possible Mode of Action Implicated in its Carcinogenicity

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_12108_sip1_m.pdf
    Size:
    4.278Mb
    Format:
    PDF
    Download
    Author
    Kong, Weixi
    Issue Date
    2012
    Keywords
    mechanism
    mode of action
    Medical Pharmacology
    brominated flame retardant
    genotoxicity
    Advisor
    Sipes, I. Glenn
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The studies in this dissertation research were conducted to investigate the possible mode of action by which a brominated flame retardant, 2, 2-Bis (bromomethyl)-1, 3-propanediol (BMP) causes genotoxicity. Binding of BMP to DNA and BMP induced DNA strand breaks were investigated in SV-40 immortalized human uroepithelial cells (UROtsa) as an in vitro model for the bladder (a tissue that developed cancer after two year exposure to BMP in rodents). Results showed binding of [¹⁴C]-BMP equivalents to DNA increased with increased exposure time and concentration of [¹⁴C]-BMP. Comet analysis indicated BMP significantly increased the extent of DNA strand breaks at 1 and 3 h of incubation. However, strand breaks were repaired by 6 h of incubation. The DNA damaging effects of BMP at 1 h was concentration dependent. Compared with the parent compound, BMP-glucuronide (the predominant metabolite of BMP) bound less to DNA and produced less DNA strand breaks in UROtsa cells. Evidences that the BMP induced strand breaks were the result of an oxidative stress include: a concentration and time dependent increase in ROS generation; increased expression of Nrf2 and HSP70; complete attenuation of BMP induced DNA strand breaks by the antioxidant, NAC; and the presence of the oxidized base 8-OHguanine. UROtsa cells appear to be target cells for BMP because, as compared to rat hepatocytes (non-target cells), these cells lack the ability to detoxify BMP via glucuronidation and also because they are deficient in glutathione, a major intracellular antioxidant molecule. Both of these genotoxic events, DNA binding and oxidative DNA damage may, in part, contribute to BMP carcinogenicity observed in rodents. The relevance of current results to humans is remained to be established.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Medical Pharmacology
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.