• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Algorithmic Developments in Monte Carlo Sampling-Based Methods for Stochastic Programming

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_12156_sip1_m.pdf
    Size:
    523.6Kb
    Format:
    PDF
    Download
    Author
    Pierre-Louis, Péguy
    Issue Date
    2012
    Keywords
    Confidence Intervals
    Monte Carlo
    Stochastic Programming
    Stopping Rules
    Variance Reduction
    Systems & Industrial Engineering
    Approximation Methods
    Advisor
    Bayraksan, Güzin
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Monte Carlo sampling-based methods are frequently used in stochastic programming when exact solution is not possible. In this dissertation, we develop two sets of Monte Carlo sampling-based algorithms to solve classes of two-stage stochastic programs. These algorithms follow a sequential framework such that a candidate solution is generated and evaluated at each step. If the solution is of desired quality, then the algorithm stops and outputs the candidate solution along with an approximate (1 - α) confidence interval on its optimality gap. The first set of algorithms proposed, which we refer to as the fixed-width sequential sampling methods, generate a candidate solution by solving a sampling approximation of the original problem. Using an independent sample, a confidence interval is built on the optimality gap of the candidate solution. The procedures stop when the confidence interval width plus an inflation factor falls below a pre-specified tolerance epsilon. We present two variants. The fully sequential procedures use deterministic, non-decreasing sample size schedules, whereas in another variant, the sample size at the next iteration is determined using current statistical estimates. We establish desired asymptotic properties and present computational results. In another set of sequential algorithms, we combine deterministically valid and sampling-based bounds. These algorithms, labeled sampling-based sequential approximation methods, take advantage of certain characteristics of the models such as convexity to generate candidate solutions and deterministic lower bounds through Jensen's inequality. A point estimate on the optimality gap is calculated by generating an upper bound through sampling. The procedure stops when the point estimate on the optimality gap falls below a fraction of its sample standard deviation. We show asymptotically that this algorithm finds a solution with a desired quality tolerance. We present variance reduction techniques and show their effectiveness through an empirical study.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Systems & Industrial Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.