Show simple item record

dc.contributor.advisorRomagnolo, Donatoen_US
dc.contributor.authorPapoutsis, Andreas
dc.creatorPapoutsis, Andreasen_US
dc.date.accessioned2012-06-11T19:32:13Z
dc.date.available2012-06-11T19:32:13Z
dc.date.issued2012
dc.identifier.urihttp://hdl.handle.net/10150/228436
dc.description.abstractEpigenetic mechanisms may contribute to reduced expression of the tumor suppressor gene BRCA-1 in sporadic breast cancers. Through environmental exposure and diet, humans are exposed to xenobiotics and food compounds that bind the aromatic hydrocarbon receptor (AhR). AhR-ligands include the dioxin-like and tumor promoter 2,3,7,8 tetrachlorobenzo-p-dioxin (TCDD). The activated AhR regulates transcription through binding to xenobiotic response elements (XRE=GCGTG) and interactions with transcription cofactors. Previously, we reported on the presence of several XRE in the proximal BRCA-1 promoter, and that the expression of endogenous AhR was required for silencing of BRCA-1 expression by TCDD. Here, we document that in estrogen receptor-alpha-positive and BRCA-1 wild-type MCF-7 breast cancer cells, the treatment with TCDD attenuated 17-beta estradiol (E2)-dependent stimulation of BRCA-1 protein and induced hypermethylation of a CpG island spanning the BRCA-1 transcriptional start site of exon-1a. Additionally, we found that TCDD enhanced the association of the AhR, DNA methyl transferases (DNMT)1, DNMT3a, and DNMT3b; methyl binding protein (MBD)2; and tri-methylated H3K9 (H3K9me3) with the BRCA-1 promoter. Conversely, the phytoalexin resveratrol, selected as a prototype dietary AhR antagonist, antagonized at physiologically relevant doses the TCDD-induced repression of BRCA-1 protein, BRCA-1 promoter methylation, and the recruitment of the AhR, MBD2, H3K9me3, and DNMTs (1, 3a, and 3b). Taken together, these observations provide evidence for a mechanistic role for AhR-agonists in establishment of BRCA-1 promoter hypermethylation and the basis for the development of prevention strategies based on AhR antagonists.
dc.language.isoenen_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.subjectepigeneticsen_US
dc.subjectresveratrolen_US
dc.subjectNutritional Sciencesen_US
dc.subjectAromatic hydrocarbon receptoren_US
dc.subjectBRCA-1en_US
dc.titleEpigenetic Regulation of Breast Cancer Type-1 Gene by the Activated Aromatic Hydrocarbon Receptor and the Preventative Effects of Resveratrolen_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.leveldoctoralen_US
dc.contributor.committeememberWondrak, Georgen_US
dc.contributor.committeememberBowden, G. Timothyen_US
dc.contributor.committeememberHowell, Wandaen_US
dc.contributor.committeememberSelmin, Ornellaen_US
dc.contributor.committeememberRomagnolo, Donatoen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineNutritional Sciencesen_US
thesis.degree.namePh.D.en_US
refterms.dateFOA2018-06-05T20:16:36Z
html.description.abstractEpigenetic mechanisms may contribute to reduced expression of the tumor suppressor gene BRCA-1 in sporadic breast cancers. Through environmental exposure and diet, humans are exposed to xenobiotics and food compounds that bind the aromatic hydrocarbon receptor (AhR). AhR-ligands include the dioxin-like and tumor promoter 2,3,7,8 tetrachlorobenzo-p-dioxin (TCDD). The activated AhR regulates transcription through binding to xenobiotic response elements (XRE=GCGTG) and interactions with transcription cofactors. Previously, we reported on the presence of several XRE in the proximal BRCA-1 promoter, and that the expression of endogenous AhR was required for silencing of BRCA-1 expression by TCDD. Here, we document that in estrogen receptor-alpha-positive and BRCA-1 wild-type MCF-7 breast cancer cells, the treatment with TCDD attenuated 17-beta estradiol (E2)-dependent stimulation of BRCA-1 protein and induced hypermethylation of a CpG island spanning the BRCA-1 transcriptional start site of exon-1a. Additionally, we found that TCDD enhanced the association of the AhR, DNA methyl transferases (DNMT)1, DNMT3a, and DNMT3b; methyl binding protein (MBD)2; and tri-methylated H3K9 (H3K9me3) with the BRCA-1 promoter. Conversely, the phytoalexin resveratrol, selected as a prototype dietary AhR antagonist, antagonized at physiologically relevant doses the TCDD-induced repression of BRCA-1 protein, BRCA-1 promoter methylation, and the recruitment of the AhR, MBD2, H3K9me3, and DNMTs (1, 3a, and 3b). Taken together, these observations provide evidence for a mechanistic role for AhR-agonists in establishment of BRCA-1 promoter hypermethylation and the basis for the development of prevention strategies based on AhR antagonists.


Files in this item

Thumbnail
Name:
azu_etd_12170_sip1_m.pdf
Size:
1.764Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record