• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Salmonella in an Oyster Production and Small Feedlot Environment, Use of Novel Proteins Expressed by an Attenuated Salmonella Vector for the Reduction of Campylobacter Colonization in Broiler Chickens

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_12064_sip1_m.pdf
    Size:
    1.723Mb
    Format:
    PDF
    Download
    Author
    Armstrong, Alexandra Edwards
    Issue Date
    2012
    Keywords
    Microbiology
    Advisor
    Joens, Lynn A.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Embargo
    Release after 30-Apr-2014
    Abstract
    The CDC estimates that 48 million illnesses, 128,000 hospitalizations, and 3,000 deaths annually are attributable to foodborne illnesses, making their impact significant in terms of both human health and economic losses (3). Estimates vary, but it is frequently stated that Campylobacter species affect 2.4 million people annually (28). Among bacterial foodborne pathogens it is second in the US only to Salmonella, which in recent years has consistently been the most frequently reported, most likely to cause hospitalization, and deadliest foodborne bacterial illness in the US (3, 106).In order to reduce the burden of illness caused by these pathogens and improve the safety of our food supply, continued investigation of the epidemiology, transmission and interactions of these organisms with their environments is necessary. Additionally, prevention of colonization within natural reservoirs of these bacteria which contribute to contamination of foods is an important step in the reduction of the burden of foodborne illness. This work examines the relationship of Salmonella to oysters and the aquatic environment in which they are raised, the interactions of Salmonella in a small feedlot environment, and the reduction of colonization of broiler chickens by Campylobacter jejuni through vaccination with recombinant attenuated Salmonella vectors into which novel Campylobacter genes had been cloned. It was found that while Salmonella is still sporadically present on the West Coast of the US, an area where oysters were previously found to be positive for the organism, the strain which predominated in the last study of that area is reduced in prevalence. Additionally, it was found that that strain does not possess special fitness in oysters or the aquatic environments in which they are raised, though Salmonella survives in oysters and water samples longer than a representative coliform. Salmonella is also present in the small feedlot environment sampled, and animal stress appears to play a role in the shedding of the organism in that environment, leading to the potential contamination of beef carcasses during processing. Reduction of colonization by C. jejuni in broilers was achieved in the case of both vaccines, with a maximum reduction of four logs as compared to controls.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Microbiology
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.