• The Tertiary Igneous Terrain in the Vicinity of the King Tonopah Mine, Tonopah, Nevada: An Exploration Case Study

      Barker, Walter Blaine; Eastoe, C. J.; Ruiz, Joaquin; Titley, Spencer R.; Barker, Walter Blaine (The University of Arizona., 1986)
      Uneconomic epithermal precious metal mineralization and associated alteration occur in the Tonopah Property, and are similar in style, although much less intense, to the deposits of the Tonopah camp two miles south. Mineralization is localized within a set of northwest-trending faults within the Tonopah, Mizpah, and King Tonopah Member of the Fraction-Tuff formations, and is associated with widespread propylitic and sparse fracture-localized potassic and argillic alteration. A younger set of Mn-calcite veins, anomalous in manganese, mercury, arsenic, and antimony, occurs in northeast-trending faults cutting older formations as well as the younger Tonopah Summit Member of the Fraction Tuff. This mineralization is possibly associated with silicification, zeolitization, and clay-alteration of the Fraction Tuff. The Tonopah Summit Member of the Fraction Tuff is reinterpreted as younger than the King Tonopah Member. Mega-breccia and basin morphology in the northeast may indicate an eruptive vent in this area.
    • Infra-Red Spectrophotometry and X-Ray Diffractometry as Tools in the Study of Nickel Laterites

      Guilbert, John M.; Azevedo, Luiz Otavio Roffee; Guilbert, John M.; Hendricks, David; Eastoe, Christopher; Wachter, Bruce; Azevedo, Luiz Otavio Roffee (The University of Arizona., 1985)
      Nickel silicate laterite deposits developed on ultra-mafic rocks are similar in many general respects but they vary considerably in detail. The mineralogy of these surficial deposits is very complex and difficult to determine because of the fine grained nature and solid solution characteristics of the hydrous secondary minerals and because many of the phases are actually mineraloids that are poorly ordered or amorphous. To try some new approaches toward clarification of these phases, 24 samples from New Caledonia and Puerto Rico ranging from the ophiolite-ultramafic olivine-pyroxene-chromite-serpentine substrate rocks upward through intermediate phases of weathering to the final oxide -hydroxide iron cap phase were analyzed with the infrared spectrophotometer (IR -10) and with the automated X –ray diffractometer. Four limonite samples were also mineralogically analyzed. Goethite, secondary quartz, cryptomelane, hematite, chromite, talc, thuringite, and garnierite have been identified in various samples as weathering profile products.
    • Economic Geology of the Big Horn Mountains of West-Central Arizona

      Allen, George B.; Chase, Clement G.; Reynolds, Stephen J.; Capps, Chris; Ruiz, Joaquin; Damon, Paul E.; Allen, George B. (The University of Arizona., 1985)
      The Big Horn Mountains are a geologically complex range that extends over 500 square km in west-central Arizona. Three major lithologic terranes outcrop: (1) Proterozoic amphibolite, phyllite, schists, gneiss, and granite; (2) Mesozoic monzonite to diorite intrusives; and (3) Cenozoic mafic to silicic volcanic rocks and clastic rocks. The entire area is in the upper plate of a detachment fault and, consequently, contains many low- to high-angle normal faults. Each lithologic terrane has its associated mineral occurrences. The Big Horn district is exclusively hosted in the pre- Tertiary terrane. Most of its mineral occurrences are spatially related to the Late Cretaceous intrusive rocks. One occurrence, the Pump Mine, may be a metamorphic secretion deposit, and therefore, would be middle Proterozoic. The vast majority of the mineral occurrences in the Big Horn Mountains are middle Tertiary in age and occur in three districts: the Tiger Wash barite - fluorite district; the Aguila manganese district; and the Osborne base and precious metal district. Fluid inclusions from Tiger Wash fluorite (T(h) 120 to 210° C, NaCl wt. equivalent 17 to 18 percent not corrected for CO₂) and nearby detachment - fault- hosted Harquahala district fluorite (T(h) 150 to 230° C., NaC1 wt. equivalent 15.5 to 20 percent not corrected for CO₂) suggest cooling and dilution of fluids as they are presumed to evolve from the detachment fault into the upper plate. Mass-balance calculations suggest that the proposed evolution of fluids is sufficient to account for the observed tonnage of barite and fluorite. The Tiger Wash occurrences grade directly into calcite- gangue-dominated manganese oxides of the Aguila district. A wide range of homogenization temperatures (T(h) 200 to 370° C.), an absence of CO₂ and low salinities (NaC1 wt. equivalent 1 to 2 percent) in the Aguila district calcite-hosted fluid inclusions argue for distillation of fluids during boiling or boiling of non saline-meteoric waters. Mass - balance calculations modeling the evolution of Ca and Mn during potassium metasomatism of plagioclase in basalt suggest that little if any influx of these cations is necessary to form the calcite –dominated manganese oxide tonnage observed. The Aguila district grades directly to the east into the base-metal and precious-metal occurrences of the Osborne district. Preliminary data describing geological settings, fluid inclusions, and geochemistry suggest that the Osborne district has a continuum between gold-rich to silver-rich epithermal occurrences. The gold-rich systems have dominantly quartz gangue, with or without fluorite, and are hosted in a variety of rocks, but are proximal to Precambrian phyllite or mid-Tertiary rhyolite. Fluid inclusions from two occurrences representative of the gold -rich systems spread across a minor range (T(h) 190 to 230° C., NaC1 wt. equivalent 17 to 23 percent not corrected for CO₂). Dilution of highly saline fluids is the inferred mechanism for precipitation of gold in the gold-quartz systems. The silver-rich systems have dominantly calcite gangue with or without quartz, and are hosted in mid-Tertiary basalt. Calcite fluid inclusions from a representative high-silver occurrence display a wide range of homogenization temperatures and salinities (T(h) 120 to 370° C., NaC1 wt. equivalent 7 to 23 percent). Boiling and consequent neutralization of acidic solutions is the inferred mechanism for the silver-rich, calcite gangue systems. A model inferring a regional fluid-flow regime and local sources of metals is proposed. Four possible regional and local causes of fluid flow in upper-plate detachment regimes are proposed: (1) regional elevation of geothermal gradients as a result of middle-crustal, lower-plate rocks rising to upper crustal levels; (2) meteoric water recharge along the southeast flank of the Harquahala antiform and consequent displacement of connate waters in the upper-plate of the Big Horn Mountains; (3) local emplacement of feeder stocks to rhyolitic flows; (4) and tilting of major upper-plate structural blocks.
    • Precambrian Geology of the Cottonwood Cliffs Area, Mohave County, Arizona

      Davis, George H.; Beard, Linda Sue; Davis, George H.; Coney, Peter J.; Lucchitta, Ivo; Beard, Linda Sue (The University of Arizona., 1985)
      A belt of Early Proterozoic rocks crops out in the Cottonwood Cliffs area, northwest Arizona. The belt contains an eastern and a western assemblage separated by the Slate Mountain fault. The western assemblage consists of mafic to felsic metavolcanic rocks, metapelites, and metaconglomerates. The eastern assemblage consists of phyllites, felsic to intermediate metavolcanic rocks, metagraywackes, and metagabbro bodies. The belt is bounded to the east by foliated granodiorite. The Valentine granite intruded the belt on the west and north. Steeply-plunging lineations and fold axes, and northeast-trending vertical foliation dominate the structural fabric. The regional elongation direction is near-vertical, as indicated by mineral and pebble lineations, and is parallel to fold axes. Although only one deformational event is evident, the intensity of that event may have obliterated evidence of any earlier deformation. Tertiary basalts and the Peach Springs Tuff locally overly the metamorphic rocks. Cenozoic normal faults in the area are mostly of minor displacement.
    • Stratigraphy and Depositional History of the Pantano Formation (Oligocene-Early Miocene), Pima County, Arizona

      Schreiber, J. F. Jr.; Balcer, Richard Allen; Schreiber, J. F. Jr.; Dickinson, W. R.; Balcer, Richard Allen (The University of Arizona., 1984)
      The Pantano Formation comprises 1,250 m of alluvial, fluvial, lacustrine, and volcanic rocks deposited in a basin formed in response to regional extension during mid- Tertiary time in southeastern Arizona. During deposition, the locations and composition of sediment source areas varied as contemporaneous uplift occurred adjacent to the basin. The lower half of the formation was deposited as alluvial fans that prograded northward, westward, and southward; the upper half was deposited during southwestward retreat of alluvial fan deposition and the onset of lacustrine deposition. An andesite flow separates the two depositional regimes. Radiometric dates of 24.4 ± 2.6 m.y. B.P. for the andesite and 36.7 ± 1.1 m.y. B.P. for a rhyolitic tuff disconformably underlying the formation indicate that deposition occurred during Oligocene to early Miocene time. Proper stratigraphic sequencing and description, paleocurrent analysis, and gravel provenance study aided in understanding the depositional history of the formation.
    • Late Quaternary Plant Zonation and Climate in Southeastern Utah

      Betancourt, Julio L.; Anthony, John W.; Martin, Paul S.; Davis, Owen K.; Turner, Raymond M.; Betancourt, Julio L. (The University of Arizona., 1983)
      Plant macrofossils from packrat middens in two southeastern Utah caves outline development of modern plant zonation from the late Wisconsin. Allen Canyon Cave (2195 m) and Fishmouth Cave (1585 m) are located along a continuous gradient of outcropping Navajo Sandstone that extends from the Abajo Mountains south to the San Juan River. By holding the site constant, changes in the floral composition for a plot of less than one hectare can be observed, even if sporadically, over tens of millennia. At Allen Canyon Cave, engelmann spruce-alpine fir forest was replaced by the present vegetation consisting of pinyon-juniper woodland on exposed ridgetops and cliffside stands of Douglas fir, ponderosa pine, and aspen. Xerophytic woodland plants such as pinyon, Plains prickly pear, and narrowleaf yucca arrived sometime in the middle Holocene between 7200 and 3400 B.P. At Fishmouth Cave, Utah juniper in Holocene middens replaced blue spruce, limber pine, Douglas fir, and dwarf and Rocky Mountain junipers in late Wisconsin samples. Disharmonious associations for the late Wisconsin occur only at the lower site with the xerophytes Mormon tea, Plains prickly pear, and narrowleaf yucca growing alongside subalpine conifers. One possible explanation involves the late Wisconsin absence of ponderosa and pinyon pines from the Colorado Plateaus. Released from competition at their lower limits, subalpine conifers were able to expand into lower elevations and mix with xerophytic plants found today in understories of pinyon-juniper and ponderosa pine woodlands. Quantitative climatic estimates are derived for the late Wisconsin by applying vertical lapse rates for temperature and precipitation to the amount of vegetation depression. The Fishmouth Cave sequence indicates a minimum lowering of 850 m for blue spruce, limber pine, and dwarf juniper. A depression of at least 700 m for engelmann spruce and alpine fir is suggested for the Allen Canyon locality. Use of conservatively low lapse rates for stations below 2080 m yields a 3-4°C cooling from present mean annual temperature and 35 to 60 percent more rainfall than today. Steeper lapse rates associated with more mountainous terrain suggest a 5°C lowering in temperature and up to 120 percent increase over modern precipitation.
    • Stratigraphy and Sedimentology of the Bisbee Group in the Whetstone Mountains, Pima and Cochise Counties, Southeastern Arizona

      Dickinson, W. R.; Archibald, Lawrence Eben; Schreiber, Joseph F., Jr.; Flessa, Karl; Archibald, Lawrence Eben (The University of Arizona., 1982)
      The Aptian-Santonian(?) Bisbee Group in the Whetstone Mountains comprises 2375 m of clastic sedimentary rocks and limestones. The basal Glance Conglomerate unconformably overlies the Pennsylvanian-Permian Naco Group. It consists of limestone conglomerates which were deposited in proximal alluvial fan environments. The superadjacent Willow Canyon Formation contains finer grained rocks which were deposited in the distal portions of alluvial fans. The lacustrine limestones in the Apache Canyon Formation interfinger with and overlie these alluvial fan facies. The overlying Shellenberger Canyon Formation is composed mostly of terrigenous rocks derived from westerly terranes. This formation contains thick sequences of fluvio-deltaic facies as well as a thin interval of estuarine deposits which mark a northwestern extension of the marine transgression in the Bisbee -Chihuahua Embayment. The youngest formation (Upper Cretaceous?) in the Bisbee Group, the Turney Ranch Formation, consists of interbedded sandstones and marls which were deposited by fluvial and marine(?) processes.
    • Structural Investigations of the Italian Trap Allochthon, Redington Pass, Pima County, Arizona

      Benson, Gregory Scott; Davis, George H.; Coney, Peter; Schreiber, Joseph F. Jr.; Benson, Gregory Scott (The University of Arizona., 1981)
      Italian Trap Allochthon is a rare upper-plate exposure of Paleozoic metasedimentary and Precambrian to Tertiary crystalline tectonites in the Santa Catalina-Rincon metamorphic core complex. Elsewhere in the complex, metasedimentary tectonite is usually restricted to an autochthononous position. The internal structures of the allochthon consist of numerous low-angle faults, tear faults, and overturned asymmetric and upright folds. Close association of the low-angle faults and asymmetric folds, and vergence of the folds, indicates that these folds were formed during westward transport along the low-angle faults. The structures of the allochthon are truncated and rotated to the northeast by a listric (?) normal fault. The probable shape of the fault surface, together with the northeastward rotation of the internal structures, suggests translation of the allochthon from the northeast to the southwest. The fact that metasedimentary tectonites are found in upper- plate position indicates that the listric (?) normal faulting post-dates the metamorphism of the Paleozoic and Mesozoic strata. Metamorphism in turn was part of the development of the Santa Catalina-Rincon metamorphic core complex. It is inferred that the Italian Trap Allochthon was emplaced in the final stages of profound regional extension which prevailed during the mid-Tertiary in southern Arizona.
    • Stratigraphical Analysis of Triassic and Lower Jurassic Rocks in Northeastern Arizona

      Ashouri, Ali-Reza; Wilson, Richard F.; Peirce, H. W.; Smiley, T. L.; Ashouri, Ali-Reza (The University of Arizona., 1980)
      A review of all available surface and subsurface data on Triassic and Lower Jurassic rocks in northeastern Arizona has revealed the following information. The Moenkopi Formation, the Chinle Formation, and the Glen Canyon Group of Triassic and Early Jurassic age are present throughout most of the study area. These units form a sequence of continental and transitional marine origin that shows notable vertical and lateral facies changes. The Moenkopi Formation thickening west and northwestward with a maximum thickness of 134 meters. The unit comprises sandstone and shale, and shows more shaley facies westward. The Chinle Formation shows minimum thickness to the north and thickens toward east and south with a maximum thickness toward west. This unit dominantly consists of sandy shale, but contains more sandstone westward and north westward. The unit contains some limestone in north and northern region. The Chinle Formation is overlain by the Glen Canyon Group, which in ascending order comprises the Wingate Sandstone, the Moenave Formation, the Kayenta Formation, and the Navajo Sandstone. The Wingate Sandstone shows its maximum thickness in the central and southcentral region of the study area and thins west and eastward. This unit mainly comprises sandstone, particularly in its upper part. The Moenave Formation displays its zero thickness, in the eastern region and shows its maximum thickness, 198 meters, in the west-central part. The unit mainly consist of sandstone. The Kayenta Formation attains its greatest thickness, 204 meters, in the southwestern part of the region and thins east and northward. This formation contains high percentages of sandstone. Within the area of this study, the Navajo Sandstone is the thickest formation in the Glen Canyon Group. This unit almost entirely consist of sandstone pinches out toward the south and east, and displays its maximum thickness, 300 meters, northward.
    • Structural Geologic Controls at the San Luis Mines, Tayoltita, Durango, Mexico

      Ballard, Stanton Neal; Davis, George H.; Coney, Peter J.; Guilbert, John M.; Ballard, Stanton Neal (The University of Arizona., 1980)
      In the San Dimas district, on the western flank of the Sierra Madre Occidental, near the small town of Tayoltita, Durango, gold and silver epithermal ore deposits are mined from the complex Arana fault system. The structural relationships of the Tayoltita system are well-mapped, but their kinematic relationship to ore deposition is unclear. In plan view and in cross-section, the Arana system has a horsetail or wedge-shaped geometry. Subsurface mapping of slickenside striae as movement indicators suggest that the N13°W-striking Arana fault, forming the eastern boundary of the system, is a normal slip fault with at least 250 m of throw. Subsidiary system faults display normal separation with varying degrees of dextral horizontal separation (which is a function of fault orientation). Experimental modeling of the Arana system indicated that the system formed under simple shear as the σ₂ and σ₃ stress axes rotated in a subhorizontal plane about σ₁. Rotational strain caused the developing fault strands to rotate and to be captured by the Arana fault, forming the typical wedge-shaped geometry. Later, a more complex rotation of the three major stress axes enabled hydrothermal fluids to progressively mineralize faults, which had more northerly strikes, by a process similar to progressive strain. This is documented by mineral assemblages that record the instants of fault opening and by the lack of mineralization along the high-angle, northwest- striking faults.
    • A Paleocene Paleomagnetic Pole from the Gringo Gulch Volcanics, Santa Cruz County, Arizona

      Barnes, Arthur E.; Smiley; Butler, R.E.; Barnes, Arthur E. (The University of Arizona., 1980)
      Paleomagnetic data from 25 sites (5 samples per site) in andesite flows of the Gringo Gulch Volcanics in Santa Cruz County, Arizona, were analyzed to determine a lower Paleocene paleomagnetic pole. Alternating-field demagnetization to 500 oe peak field was sufficient to erase secondary viscous components. The mean direction of magnetization (inclination = -58.8°, declination = 167.5 °) was obtained by averaging the site mean directions of the 25 sites, which are all reversed. The resultant lower Paleocene pole position is at lat. 77.0 °N, 1on. 201.0 °E (dp = 1.2 °, dm = 1.7 °).
    • An Analysis and Interpretation of Gravity and Magnetic Anomalies of the Butte District, Montana

      Ahrens, Gary Louis; Sumner, John S.; Ahrens, Gary Louis (The University of Arizona., 1976)
      An interpretation of gravity and magnetic anomalies of the Butte district, Montana, is based on the analysis of five gravity profiles constructed from Bouguer gravity data of the Butte district observed during the summer of 1974 and give concurrent magnetic profiles constructed from U.S. Geological Survey high-level aeromagnetic data of the district. Of primary concern in this analysis is the interpretation of the Bouguer gravity high and aeromagnetic low associated with the Butte orebody. Results of this interpretation yield a configuration for the Butte orebody characterized by vertical contacts extending from the surface or directly beneath Cenozoic basin fill to 4,500 feet below sea level, with a central core, elongate in the north -south direction, surrounded by a variable outer zone, which is more pronounced in the southern and western portions of the district. The central core is interpreted as a region of zero magnetic susceptibility with three density distributions, all of which are of higher densities than the surrounding host rock and are related to the varying degrees of mineralization and alteration present in this region. The laterally variable outer zone is interpreted as a zone of low magnetic susceptibility with a density equal to that of the host rock. This zone is related to the peripheral mineralization and alteration of the Butte orebody.
    • Geology and Origin of the Breccias in the Morenci-Metcalf District, Greenlee County, Arizona

      Bennett, Kenneth Carlton, 1946-; Guilbert, John M.; Titley, Spencer R.; Anthony, John W.; Bennett, Kenneth Carlton (The University of Arizona., 1975)
      Rocks of the Morenci-Metcalf district consist of Precambrian metaquartzite-schist, granodiorite, and granite overlain by Paleozoic and Mesozoic sediments. Intrusion of igneous rocks, emplacement of breccia masses, and associated hydrothermal activity occurred in Laramide time. Breccias of the district are associated with the youngest sialic intrusive complex. This sequence includes intrusion of the Older Granite Porphyry stock, main stage district hydrothermal alteration, quartz veining, breccia formation, main stage district hydrothermal mineralization, and intrusion of the Younger Granite Porphyry plug. Breccia formation in the Morenci-Metcalf district is similar to breccia descriptions reported in the literature for other porphyry copper deposits. Three breccia types, of separate and distinct origins, are herein described as the Morenci, Metcalf and King, and Candelaria Breccias. The Morenci Breccia is an intrusion breccia that has formed along a pre-existing structural feature during the ascent and emplacement of the Older Granite Porphyry stock. It exhibits an oblate lenticular shape with angular to subrounded fragments in a matrix of quartz, K-feldspar, biotite, and minor rock flour. The Metcalf-King Breccias and numerous smaller breccia masses are the remnants of an original Older Granite Porphyry mantle above the ascending Younger Granite Porphyry complex. The breccia masses occur as large 'xenoliths' floating within the Younger Granite Porphyry plug and were formed by surging and collapse during emplacement of this intrusive. Fragments in the Metcalf and King Breccias grade from angular in the central core to rounded at the contacts and occur in a matrix of sericite, K- feldspar, quartz, and rock flour. The Candelaria Breccia is an explosion pipe and is the largest continuous breccia mass in the district. It is oval with an inverted cone appearance consisting of angular to subangular equidimensional fragments in a matrix of sericite, quartz, specularite, and rock flour. All the breccia masses occur within and subsequent to the district phyllic (quartz-sericite-pyrite) alteration zone. Main stage district copper mineralization postdates emplacement of the Older Granite Porphyry stock and breccia formation, and is prior to the intrusion of the Younger Granite Porphyry plug. Late stage quartz-sericite-pyrite-chalcopyrite veinlets occur in the Metcalf-King Breccia group. Field mapping and laboratory studies indicate that the Older Granite Porphyry stock appears to have been the main district mineralizer.
    • Downward Continuation of Bouguer Gravity Anomalies and Residual Aeromagnetic Anomalies by Means of Finite Differences

      Arenson, John Dean; Sturgul, J. R.; Sumner, J. S.; Norton, D. D.; Arenson, John Dean (The University of Arizona., 1975)
      The depths to buried bodies, characterized by anomalous gravity and magnetic properties, are determined by a combination of two numerical techniques. An upward continuation integral is solved by a method by Paul and Nagy using elemental squares and low order polynomials to describe the behavior of the gravity or magnetic data between observed data points. Downward continuation of the magnetic or gravity data is done by a finite difference technique as described by Bullard and Cooper. The applicability of the techniques are determined by comparison to depths determined by other means over the same anomalies and by comparison to various rule-of-thumb methods prevalent in the geophysical literature. The relative speed and cost of the particular computer system used is also considered in the applicability. The results show that although the initial costs of the computer program are high, the combined technique is as good as and at times better than the rule-of-thumb methods in determining the depth to the anomaly-causing body and is useful when more than just an approximate depth is of interest.
    • Small Vertebrates of the Bidahochi Formation, White Cone, Northeastern Arizona

      Baskin, Jon Alan, 1947-; Lindsay, Everett H.; Baskin, Jon Alan (The University of Arizona., 1975)
      Two taxa of amphibians, five taxa of reptiles, and eighteen taxa of mammals were collected by screen-washing sediments from the upper Bidahochi Formation at White Cone peak, northeastern Arizona. Five new species of mammals were recovered. They include Perognathoides bidahochiensis (Heteromyidae), Bensonomys yazhi (Cricetidae), Bensonomys bradyi (Cricetidae), Paronychomys alticuspis (Cricetidae), and Martes (Plionictis) repenningi (Mustelidae). Bensonomys yazhi and Bensonomys bradyi are close to the stem of Central and South Americal hesperomyine radiation. The radiation began in the southwest United States and Mexico during the Hemphillian. The middle member of the Bidahochi Formation is dated at 6.7 m. y. by a basalt from Roberts Mesa. The paleomagnetic data and the White Cone local fauna support this middle Hemphillian date.
    • Geology of the Palo Verde Ranch Area, Owl Head Mining District, Pinal County, Arizona

      Applebaum, Steven; Guilbert, John M.; Davis, George H.; Sumner, John S.; Applebaum, Steven (The University of Arizona., 1975)
      A quartz diorite intrusion of probable early Tertiary age that crops out over at least 6 square miles in the Palo Verde Ranch area in Pinal County, Arizona was mapped as a distinct intrusion. The quartz diorite intrudes an area comprising Pinal Schist, Oracle granite, andesitic flows, granoaplite, and dike rocks including both pegmatite and diabase. Two major physical features, the Owl Head Buttes and Chief Buttes volcanic areas, both remnants of an extensive early Tertiary series of flows of intermediate composition that covered the area, now remain as lava-capped buttes above the pediment. Weak but persistent fracture-controlled copper mineralization is found in the quartz diorite and the Pinal Schist at or near their mutual contacts in the form of chrysocolla, malachite, black copper oxides, chalcocite, chalcopyrite, and bornite, in decreasing order. Pyrite is rare. Alteration related to northeast and northwest-trending fractures increases in intensity from the common propylitic to argillic to the northeast toward the San Juan claims area. A barely discernible increase in copper sulfides mirrors the alteration zoning, although geochemical sampling showed background copper in the quartz diorite to be more uniform away from fractures.
    • Paleocurrents and Depositional Environments of the Dakota Group (Cretaceous), San Miguel County, New Mexico

      Bejnar, Craig Russel; Wilson, Richard F.; Schreiber, Joseph F. Jr.; Kremp, Gerhard O. W.; Bejnar, Craig Russel (The University of Arizona., 1975)
      The Dakota Group surrounding Las Vegas, New Mexico, consists of three units: 1) a basal, predominately trough cross-stratified, conglomeratic sandstone, 2) middle intercalated, thin-bedded sandstone and carbonaceous shale, and 3) upper, predominately tabular-planar cross-stratified, sandstone containing trace fossils. These units represent, respectively, 1) a fluvial piedmont plain, 2) fluvial coastal plain, and 3) a beach, littoral, and shallow marine complex. The cross-stratification in the lower sandstone unit indicates an easterly paleoslope. The cross-stratification in the upper sandstone unit has a bimodal distribution almost at right angles to the paleoslope, suggesting deposition by longshore currents. The standard deviation of the cross-stratification in the lower sandstone unit of 78° is typical of fluvial deposits. The standard deviation in the upper sandstone unit of 97° indicates a marine origin.
    • The Conodont Biostratigraphy of the Black Prince Limestone (Pennsylvanian) of Southeastern Arizona

      Barrie, Kathleen Ann; Schumacher, Dietmar; Bryant, Donald L.; Schreiber, Joseph F. Jr.; Barrie, Kathleen Ann (The University of Arizona., 1975)
      The Black Prince Limestone of southeastern Arizona has been assigned to the Morrowan on the basis of several long-ranging fossils. Since these were not especially diagnostic, the exact time represented by the Black Prince within the Morrowan was uncertain. To date the Black Prince more precisely, six sections were systematically sampled for conodonts. The condonts found, especially Neognathodus bassleri, Rachistognathus muricatus, Idiognathoides convexus, and Spathoqnathodus coloradoensis, indicate a middle Morrowan to early Derryan age for the Black Prince in the study area. Four conodont zones can be recognized: the Neognathodus bassleri Zone, the Idiognathodus sinuosis.- Streptognathodus anteeccentricus Zone , the Idiognathoides convexus Zone, and the Spathognathodus coloradoensis-Neognathodus columbiensis Zone. These zones compare favorably with the zonation previously established in the type Morrowan. This biostratigraphic evidence suggests that the hiatus between the Black Prince and Horquilla Limestones increases in magnitude from southeastern to south-central Arizona. The Black Prince represents a sequence of tidal flat and shallow subtidal carbonate deposits. Mudstones and sparsely fossiliferous wackestones with low fossil diversity and abundance characterize the tidal-flat facies. Grainstones, packstones, and fossiliferous wackestones with high fossil diversity and abundance characterize the shallow subtidal facies.
    • Saturated Hydrocarbons in Fatty Tissue of Beef Heart

      Nagy, B.; Bandurski, Eric Lord; Bandurski, Eric Lord (The University of Arizona., 1972)
      Saturated hydrocarbons were extracted from fatty tissue of beef heart and identified by combined gas chromatography-mass spectrometry. A complete series of normal alkanes from C₁₄ to C₃₅ was identified together with three isoprenoid hydrocarbons, 2, 6, 10, 14- tetramethylpentadecane (pristane), 2, 6, 10, 14- tetramethylhexadecane (phytane), and 2, 6, 10- trimethyltridecane. In addition, a C₁₇ branched alkane with an isoprenoid-like fragmentation pattern was identified but the spectrum could not be matched with that of a C₁₇ isoprenoid hydro-carbon reported in sediments. The distribution pattern of the ṉ-alkanes is very similar to that reported in pasture plants, indicating that the ṉ-alkanes are derived from the steer's diet. The isoprenoids have not yet been reported in plant tissues, suggesting that they might be produced in the steer from the phytol side chain of chlorophyll a.
    • Pollen in Fecal Pellets as an Environmental Indicator

      Bartos, Frances Maribel; Martin, Paul S.; Solomon, Allen M.; Kremp, G.O.W.; Bartos, Frances Maribel (The University of Arizona., 1972)
      Identification of pollen in fecal pellets is a potential technique for describing an animals diet and in turn the vegetation of an area. Mule deer and Bighorn Sheep pellets representing both summer and winter browsing and a variety of habitats were examined using relative percentages and the absolute pollen frequencies. In addition, fossil pellets from Stanton's Cave, Grand Canyon, Arizona, were examined and compared with modern pellets. Absolute pollen frequencies of individual pellets showed higher values and greater variation for summer pellets than for winter pellets. Relative pollen percentages for a specific vegetation type showed more variation in fecal pellets than in soil surface samples. Unless specifically being eaten, arboreal pollen types such as Pinus are less abundant in fecal pellets than in soil samples. Unlike soil surface samples, arboreal pollen types in fecal pellets are frequently limited to the immediate source area.