• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Spinal Sensitization Mechanisms Promoting Pain: Gabaergic Disinhibition and Pkmζ-Mediated Plasticity

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_12255_sip1_m.pdf
    Size:
    1.776Mb
    Format:
    PDF
    Download
    Author
    Asiedu, Marina N.
    Issue Date
    2012
    Keywords
    PKM zeta
    Sensitization
    Medical Pharmacology
    Chronic pain
    GABA
    Advisor
    Price, Theodore J.
    Dussor, Gregory O.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    As a major public health problem affecting more that 76.5 million Americans, chronic pain is one main reason why people seek medical attention. It is a pathological nervous system disorder that persists for months or years. Sensitization of nociceptive neurons in the dorsal horn of the spinal cord is crucial in the development of allodynia and hyperalgesia. The work presented in this thesis will focus on spinal protein kinase M zeta (PKMζ)-mediated plasticity and GABAergic disinhibition as spinal amplification mechanisms that orchestrate persistent changes in the dorsal horn of the spinal cord. As a result of central sensitization following peripheral nerve injruy, GABAergic disinhibition occurs due to an alteration in Cl- homeostasis via reduced KCC2 expression and function. Intrathecal administration of acetazolamide (ACT), a carbonic anhydrase inhibitor, attenuated neuropathic allodynia and spinal co-adminitation of ACT and midazolam (MZL), an allosteric modulator of the benzodiazepine class of GABAA receptors, synergistically inhibited neuropathic allodynia. Further studies concerning the impact of altered Cl-homeostasis via reduced KCC2-mediated Cl-extrusion capacity on the analgesic efficacy and potency of GABAA receptor agonist and allosteric modulators revealed that there is a differential regulation of the agonists and allosteric modulators at the GABAA receptor complex when Cl-homeostasis is altered. Another spinal amplification mechanism leading to central sensitization is PKMζ-mediated spinal LTP. In model of persistent nociceptive sensitization, allodynia induced by IL-6 injection or plantar incision was abolished by both the inhibition of protein translation machinery and PKMζ inhibitor, ZIP. However, only PKMζ inhibition prevented the enhanced pain hypersensitivity precipitated by a subsequent stimulus after the initial hypersensitivity had resolved, asserting that spinal PKMζ underlies the maintenance mechanisms of persistent nociceptive sensitization. Also, these results confirmed that the initiation mechanisms of persistent sensitization parallel LTP initiation mechanisms and the maintenance mechanisms of persistent sensitization parallel LTP maintenance mechanisms. Taken together, these results indicate that these amplification mechanisms drive a chronic persistent state in these models such that inhibition of these spinal amplication mechanisms will serve as an effective approach in the quenching chronic pain hypersensitivity in chronic pain models.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Medical Pharmacology
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.