• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Compressed Sensing Reconstruction Using Structural Dependency Models

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_12253_sip1_m.pdf
    Size:
    4.792Mb
    Format:
    PDF
    Download
    Author
    Kim, Yookyung
    Issue Date
    2012
    Keywords
    model
    reconstruction
    sparsity
    Electrical & Computer Engineering
    compressed sensing
    dependency
    Advisor
    Bilgin, Ali
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Compressed sensing (CS) theory has demonstrated that sparse signals can be reconstructed from far fewer measurements than suggested by the Nyquist sampling theory. CS has received great attention recently as an alternative to the current paradigm of sampling followed by compression. Initial CS operated under the implicit assumption that the sparsity domain coefficients are independently distributed. Recent results, however, show that exploiting statistical dependencies in sparse signals improves the recovery performance of CS. This dissertation proposes model-based CS reconstruction techniques. Statistical dependency models for several CS problems are proposed and incorporated into different CS algorithms. These models allow incorporation of a priori information into the CS reconstruction problems. Firstly, we propose the use of a Bayes least squares-Gaussian scale mixtures (BLS-GSM) model for CS recovery of natural images. The BLS-GSM model is able to exploit dependencies inherent in wavelet coefficients. This model is incorporated into several recent CS algorithms. The resulting methods significantly reduce reconstruction errors and/or the number of measurements required to obtain a desired reconstruction quality, when compared to state-of-the-art model-based CS methods in the literature. The model-based CS reconstruction techniques are then extended to video. In addition to spatial dependencies, video sequences exhibit significant temporal dependencies as well. In this dissertation, a model for jointly exploiting spatial and temporal dependencies in video CS is also proposed. The proposed method enforces structural self-similarity of image blocks within each frame as well as across neighboring frames. By sparsely representing collections of similar blocks, dominant image structures are retained while noise and incoherent undersampling artifacts are eliminated. A new video CS algorithm which incorporates this model is then proposed. The proposed algorithm iterates between enforcement of the self-similarity model and consistency with measurements. By enforcing measurement consistency in residual domain, sparsity is increased and CS reconstruction performance is enhanced. The proposed approach exhibits superior subjective image quality and significantly improves peak-signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM).Finally, a model-based CS framework is proposed for super resolution (SR) reconstruction. The SR reconstruction is formulated as a CS problem and a self-similarity model is incorporated into the reconstruction. The proposed model enforces similarity of collections of blocks through shrinkage of their transform-domain coefficients. A sharpening operation is performed in transform domain to emphasize edge recovery. The proposed method is compared with state-of-the-art SR techniques and provides high-quality SR images, both quantitatively and subjectively.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Electrical & Computer Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.