• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Spatiotemporal Measures of Exposure and Sensitivity to Climatic Variability and Change: The Cases of Modern Sea Level Rise and Southwestern U.S. Bioclimate

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_12290_sip1_m.pdf
    Size:
    32.43Mb
    Format:
    PDF
    Download
    Author
    Weiss, Jeremy Lee
    Issue Date
    2012
    Keywords
    Geosciences
    Advisor
    Overpeck, Jonathan T.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Embargo
    Release after 26-Jul-2014
    Abstract
    Human activities are the main driver of environmental changes over the past 100-200 years, and threaten the stability of Earth's environmental systems. One part of Earth's environment already destabilized due to human activities is its climate. With human-caused changes to Earth's climate expected to continue, questions arise as to which, where, and when impacts to human and natural systems might occur. Understanding the vulnerability - the exposure, sensitivity, and resilience - of a system to changes in climate is essential to addressing these questions. This study represents an assessment of system vulnerability to climate change through the cases of modern sea level rise (SLR) and southwestern U.S. (SW) bioclimate. SLR is an important consequence of human-caused climate change, as higher seas have the potential to cause major social, environmental, and economic impacts. With a focus on sensitivity to SLR, we developed a new geospatial dataset that delineates low-lying coastal areas and overlaid this dataset with boundaries of U.S. cities with populations greater than 50,000 to determine areas prone to SLR impacts in this and subsequent centuries. Results demonstrate that potential SLR impacts to 180 U.S. cities will be very local and disproportionate. Recent warm and dry conditions have altered SW bioclimate, and expected further increases in regional temperatures raise concern that anomalous growing conditions will continue to occur and, in cases, worsen in the future. With a focus on exposure of SW vegetation to changing growing conditions, we compared the 1950s and 2000s droughts to take advantage of the opportunity to study mesoscale ecosystem responses to anomalously dry conditions before and during the regional warming. Higher temperatures and evapotranspirational demand during the more recent drought altered the degree to which climate limited foliar growth. These climatic conditions reduced effects of suboptimal temperatures on foliar growth at lower elevations in winter and higher elevations in summer. They also increased constraints of evapotranspirational demand on foliar growth at lower and middle elevations from spring through summer. Free-tropospheric air temperatures, a strong influence on climate in mountainous areas, support statistical downscaling of projected SW temperatures to assess if and when similar or more anomalous conditions will occur in upcoming decades. Assessing the vulnerability of a system to changes in Earth's climate like those taking place and projected to happen is a way for environmental sciences to help inform policy decisions that consequently stem from past or potential impacts of climatic hazards.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Geosciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.