• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    High-Power Optically Pumped Semiconductor Lasers for Near Infrared Wavelengths

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_12339_sip1_m.pdf
    Size:
    3.453Mb
    Format:
    PDF
    Download
    Author
    Wang, Tsuei-Lian
    Issue Date
    2012
    Keywords
    semiconductor
    Optical Sciences
    lasers
    quantum well
    Advisor
    Moloney, Jerome V.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Optically pumped semiconductor lasers (OPSLs) combine features including an engineerable emission wavelength, good beam quality, and scalable output power and are desirable for a wide variety of applications. Power scaling of OPSLs requires a combination of accurate epitaxial quantum design, accurate wafer growth and good thermal management. Here a fabrication process for OPSL devices was developed to ensure efficient OPSL device cooling and minimum surface scattering. A systematic thermal analysis was performed to optimize thermal management. Strategies for optimizing power extraction were developed; including increasing the gain/micro-cavity detuning that increases the threshold but also increases the slope efficiency and the roll-over temperature, recycling the excess pump via reflection from a metalized reflector at the back of a transparent DBR, anti-reflection coating at the pump wavelength while preserving the signal micro-cavity resonance. With optimized thermal management and the strategy of using large gain/micro-cavity detuning structure, a CW output power of 103 W from a single OPSL device was achieved. 42% optical-to-optical efficiency from the net pump power was obtained from the OPSL device with the double pass pump design and 39% optical-to-optical efficiency with respect to the total pump power was obtained with the new pump anti-reflection coating. For the fundamental mode operation, over 27 W of CW output power was achieved. To our knowledge, this is the highest 1 µm TEM₀₀ mode power reported to date for an OPSL. Finally, strategies for generating high peak power are also discussed. A maximum peak power of over 270 W was achieved using 750 ns pump pulses.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Optical Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.