• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Infrared Insights on the Nature and Evolution of Star-Forming Galaxies

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_12370_sip1_m.pdf
    Size:
    12.63Mb
    Format:
    PDF
    Download
    Author
    Rujopakarn, Wiphu
    Issue Date
    2012
    Keywords
    Astronomy
    Advisor
    Rieke, George
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The peak of the star formation rate (SFR) of the Universe is widely accepted to be at 1 < z < 3, after which the SFR declined by more than an order of magnitude to the present level. The mechanisms resulting in the decline and the nature of individual star-forming galaxies at the peak of galaxy evolution, however, are poorly understood. This thesis summarizes an effort to understand both the statistical properties of star-forming galaxies and the physical conditions in individual galaxies at 0 < z < 3. I have studied the star formation (SF) sizes of local and high-z ultraluminous infrared galaxies (ULIRGs) using Pa-alpha, 24 micron and radio continuum observations and discovered that high-z ULIRGs have extended SF regions over 3-10 kpc, similar to local lower LIR SF galaxies, but with a scaled-up star formation rate surface density, ∑(SFR). Local ULIRGs, in contrast, are compact and invariably merger-triggered starbursts. A major implication to galaxy evolution is that there is a route besides major mergers to trigger very high levels of SF activity at z ~ 2, a conclusion further supported by our morphological study. I also find star formation rate surface density to be a good indicator of the IR galaxy spectral energy distribution universally and use this fact to develop a new SFR estimator using single-band 24 micron observations. The resulting indicator predicts IR luminosity and SFR within 0.15 dex of the values measured with far-IR photometry. This affords the deepest unobscured probe of SF at 0 < z < 3. According to my separate study, the spread of extinction values of SF galaxies is larger than previously known from optical observations and also indicates a large variety of dust distribution scenarios, from a uniform mixture that resembles the extinction screen assumption to inhomogeneous mixtures, which could undermine the assumptions commonly used to correct for extinction at high-z and necessitates the use of unobscured SF tracers. Lastly, I present the luminosity functions of galaxies and their evolution measured from IR observations out to z = 1.2.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Astronomy
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.