Show simple item record

dc.contributor.authorBarclay, C. S. Venable
dc.date.accessioned2012-09-15T01:49:33Z
dc.date.available2012-09-15T01:49:33Z
dc.date.issued1968
dc.identifier.urihttp://hdl.handle.net/10150/244073
dc.description.abstractThe Gore Canyon-Kremmling area is in the southwestern portion of the Kremmling 15-minute quadrangle, Colorado. Precambrian rocks are biotite gneiss, the Boulder Creek Granodiorite, granophyre dikes, and quartz veins. The Boulder Creek Granodiorite intrudes the biotite gneiss, and both of these units are cut by north-northwest-trending, granophyre dikes and quartz veins. Biotite gneiss contains structure elements of a northwest and a northeast fold system. Lineations and foliations in the Boulder Creek Granodiorite are generally concordant to the northeast fold system of the gneiss. Late Paleozoic to Mesozoic and Mesozoic sedimentary formations, in ascending order and with their approximate thicknesses, are the State Bridge Formation, 15 feet; the Chinle and Chugwater Formations undivided, 0-95 feet; the Sundance Formations 0?-100 feet; the Morrison Formation, 250 feet; the Dakota Sandstone, 225 feet; the Benton Shale, 340 feet; the Niobrara Formation, 600 feet; and the Pierre Shale. Quaternary deposits are terrace, landslide, and modern flood-plain deposits. Laramide rock deformation is related to the Park Reuse uplift and includes faulting and, in the sediments, some folding. Some of the faults, including the regional Gore fault, are Precambrian structures reactivated in Laramide time.
dc.language.isoen_USen_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the Antevs Library, Department of Geosciences, and the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author or the department.en_US
dc.subjectareal geologyen_US
dc.subjectColoradoen_US
dc.subjectGore canyonen_US
dc.subjectGrand County Coloradoen_US
dc.subjectKremmlingen_US
dc.subjectUnited Statesen_US
dc.subjectGeology -- Colorado -- Grand Countyen_US
dc.titleGeology of the Gore Canyon-Kremmling Area, Grand County, Coloradoen_US
dc.typetexten_US
dc.typeThesis-Reproduction (electronic)en_US
dc.contributor.chairMayo, Evans B.en_US
dc.identifier.oclc29893918
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.levelmastersen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineGeologyen_US
thesis.degree.nameM.S.en_US
dc.description.noteAntevs Libraryen_US
dc.description.collectioninformationThis item is part of the Geosciences Theses collection. It was digitized from a physical copy provided by the Antevs Library, Department of Geosciences, University of Arizona. For more information about items in this collection, please email the Antevs Library, antevs@geo.arizona.edu.en_US
dc.contributor.creatorBarclay, C. S. Venableen_US
dc.identifier.georef1971-060507
refterms.dateFOA2018-06-16T17:02:06Z
html.description.abstractThe Gore Canyon-Kremmling area is in the southwestern portion of the Kremmling 15-minute quadrangle, Colorado. Precambrian rocks are biotite gneiss, the Boulder Creek Granodiorite, granophyre dikes, and quartz veins. The Boulder Creek Granodiorite intrudes the biotite gneiss, and both of these units are cut by north-northwest-trending, granophyre dikes and quartz veins. Biotite gneiss contains structure elements of a northwest and a northeast fold system. Lineations and foliations in the Boulder Creek Granodiorite are generally concordant to the northeast fold system of the gneiss. Late Paleozoic to Mesozoic and Mesozoic sedimentary formations, in ascending order and with their approximate thicknesses, are the State Bridge Formation, 15 feet; the Chinle and Chugwater Formations undivided, 0-95 feet; the Sundance Formations 0?-100 feet; the Morrison Formation, 250 feet; the Dakota Sandstone, 225 feet; the Benton Shale, 340 feet; the Niobrara Formation, 600 feet; and the Pierre Shale. Quaternary deposits are terrace, landslide, and modern flood-plain deposits. Laramide rock deformation is related to the Park Reuse uplift and includes faulting and, in the sediments, some folding. Some of the faults, including the regional Gore fault, are Precambrian structures reactivated in Laramide time.


Files in this item

Thumbnail
Name:
azu_td_geo_0049_sip1_w.pdf
Size:
22.86Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record