• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Honors Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Honors Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Modeling Cell Cycle Effects of Human 14-3-3 Tumor Promoting Proteins in Saccharomyces Cerevisiae

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_mr_2012_0103_sip1_m.pdf
    Size:
    461.8Kb
    Format:
    PDF
    Download
    Author
    Liu, Natalie
    Putnam, Charles W.
    Martinez, Jesse D.
    Issue Date
    2012-05
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    In this study, we used budding yeast as a model organism to examine the effects of overexpression of Bmh1, a yeast homolog of 14-3-3γ. We found that in the presence of modest DNA damage, Bmh1 overexpression had its most prominent effect during G2/M-phase of the cell cycle. We also observed that overexpression of Bmh1 concurrent with the induction of DNA damage partially rescued the G2/M arrest defect caused by the absence of Rad9, a key component of the G2/M DNA damage checkpoint pathway. When RAD53, a gene in the "Rad53 pathway" of the G2/M checkpoint, was deleted, overexpression of Bmh1 had no effect. However, overexpression of Bmh1 in a strain bearing the rad53-11 mutation partially rescued the arrest. Additionally, Bmh1 overexpression had a minimal effect on the G2/M arrest response with deletion of Chk1, a key component of the parallel G2/M checkpoint pathway. This led us to hypothesize that overexpression of Bmh1in the absence of Rad9 modulates the Rad53 pathway. We propose a model in which the rescue of Rad9’s otherwise obligatory role in the DNA damage checkpoint is the consequence of Bmh1 subserving the adaptor function of Rad9 by bringing Mec1 and Rad53 together.
    Type
    text
    Electronic Thesis
    Degree Name
    B.S.
    Degree Level
    bachelors
    Degree Program
    Honors College
    Molecular and Cellular Biology
    Degree Grantor
    University of Arizona
    Collections
    Honors Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.