• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Honors Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Honors Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Markov Chain Monte Carlo and Non-Reversible Methods

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_mr_2012_0211_sip1_m.pdf
    Size:
    6.240Mb
    Format:
    PDF
    Download
    Author
    Xu, Jason Qian
    Issue Date
    2012-05
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The bulk of Markov chain Monte Carlo applications make use of reversible chains, relying on the Metropolis-Hastings algorithm or similar methods. While reversible chains have the advantage of being relatively easy to analyze, it has been shown that non-reversible chains may outperform them in various scenarios. Neal proposes an algorithm that transforms a general reversible chain into a non-reversible chain with a construction that does not increase the asymptotic variance. These modified chains work to avoid diffusive backtracking behavior which causes Markov chains to be trapped in one position for too long. In this paper, we provide an introduction to MCMC, and discuss the Metropolis algorithm and Neal’s algorithm. We introduce a decaying memory algorithm inspired by Neal’s idea, and then analyze and compare the performance of these chains on several examples.
    Type
    text
    Electronic Thesis
    Degree Name
    B.S.
    Degree Level
    bachelors
    Degree Program
    Honors College
    Mathematics
    Degree Grantor
    University of Arizona
    Collections
    Honors Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.