Show simple item record

dc.contributor.advisorScheres, Anouken_US
dc.contributor.authorKnight, Katherine Ellis*
dc.creatorKnight, Katherine Ellisen_US
dc.date.accessioned2012-10-05T22:09:40Z
dc.date.available2012-10-05T22:09:40Z
dc.date.issued2012
dc.identifier.urihttp://hdl.handle.net/10150/247278
dc.description.abstractA better understanding of the neural mechanisms associated with Attention Deficit Hyperactivity Disorder (ADHD) and related cognitive deficits can potentially clarify the neural circuits involved in ADHD symptoms, help define neurobiologically informed subtypes and aid in developing more refined treatments. Two neurotransmitter (NT) systems have been implicated in ADHD: Dopamine (DA), and Norepinephrine (NE), and the primary cognitive deficits associated with ADHD are in working memory, response inhibition, reaction time variability, and reward processing. Frank et al. (2007a) proposes, based on computational models, that DA is associated with deficits in reward-based learning and updating of working memory, while NE is associated with deficits in response inhibition and greater response variability. Therefore, it might be possible to learn more about the NT systems' specific roles in ADHD by studying the associated cognitive deficits. The primary goal of this study was to assess performance in adolescents with and without ADHD on a number of cognitive tasks. We expected that the Attention Deficit Hyperactivity Disorder - Inattentive Subtype (ADHD-I) group would perform the worst on NE tasks and that the Attention Deficit Hyperactivity Disorder - Combined Subtype (ADHD-C) group would perform the worst on DA tasks, and that both groups would perform worse than controls on all tasks. Instead, we found that the ADHD-I group performed the most poorly on updating of working memory, while the ADHD-C group performed the best on this variable. However, the ADHD-C group performed worst on overall working memory. Dimensional analyses revealed that hyperactivity/impulsivity is positively correlated with updating of working memory, while inattention is negatively correlated with updating of working memory. In addition, hyperactivity/impulsivity was positively correlated with reaction time variability. In conclusion, it is likely that the roles of these NT systems are not as mutually exclusive as initially expected. It is also possible that our ADHD group was performing more like control groups in other studies, which might be due to a more 'pure' ADHD sample with less comorbid Oppositional Defiant Disorder (ODD) and Conduct disorder (CD), or could be due to a less symptomatic ADHD group.
dc.language.isoenen_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.subjectDopamineen_US
dc.subjectNeurotransmittersen_US
dc.subjectNorepinephrineen_US
dc.subjectsubtypesen_US
dc.subjectPsychologyen_US
dc.subjectADHDen_US
dc.subjectAttentionen_US
dc.titleAttention Deficit Hyperactivity Disorder (ADHD) in Adolescents: An Investigative Study of Dopamine and Norepinephrine Systemsen_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.leveldoctoralen_US
dc.contributor.committeememberBootzin, Richarden_US
dc.contributor.committeememberAllen, John J.B.en_US
dc.contributor.committeememberSbarra, Daveen_US
dc.contributor.committeememberScheres, Anouken_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplinePsychologyen_US
thesis.degree.namePh.D.en_US
refterms.dateFOA2018-06-04T15:55:30Z
html.description.abstractA better understanding of the neural mechanisms associated with Attention Deficit Hyperactivity Disorder (ADHD) and related cognitive deficits can potentially clarify the neural circuits involved in ADHD symptoms, help define neurobiologically informed subtypes and aid in developing more refined treatments. Two neurotransmitter (NT) systems have been implicated in ADHD: Dopamine (DA), and Norepinephrine (NE), and the primary cognitive deficits associated with ADHD are in working memory, response inhibition, reaction time variability, and reward processing. Frank et al. (2007a) proposes, based on computational models, that DA is associated with deficits in reward-based learning and updating of working memory, while NE is associated with deficits in response inhibition and greater response variability. Therefore, it might be possible to learn more about the NT systems' specific roles in ADHD by studying the associated cognitive deficits. The primary goal of this study was to assess performance in adolescents with and without ADHD on a number of cognitive tasks. We expected that the Attention Deficit Hyperactivity Disorder - Inattentive Subtype (ADHD-I) group would perform the worst on NE tasks and that the Attention Deficit Hyperactivity Disorder - Combined Subtype (ADHD-C) group would perform the worst on DA tasks, and that both groups would perform worse than controls on all tasks. Instead, we found that the ADHD-I group performed the most poorly on updating of working memory, while the ADHD-C group performed the best on this variable. However, the ADHD-C group performed worst on overall working memory. Dimensional analyses revealed that hyperactivity/impulsivity is positively correlated with updating of working memory, while inattention is negatively correlated with updating of working memory. In addition, hyperactivity/impulsivity was positively correlated with reaction time variability. In conclusion, it is likely that the roles of these NT systems are not as mutually exclusive as initially expected. It is also possible that our ADHD group was performing more like control groups in other studies, which might be due to a more 'pure' ADHD sample with less comorbid Oppositional Defiant Disorder (ODD) and Conduct disorder (CD), or could be due to a less symptomatic ADHD group.


Files in this item

Thumbnail
Name:
azu_etd_12403_sip1_m.pdf
Size:
280.1Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record