Quaternary Ostracode Paleoecology and Its Link to Climate Change in the Bonneville Basin: A Detailed Study of the Glad800 Core GSL00-4, Great Salt Lake, Utah
Name:
azu_td_geo_0037_sip1_w.pdf
Size:
1.004Mb
Format:
PDF
Description:
Master's Thesis Full PDF
Author
Balch, Deborah P.Issue Date
2003Advisor
Cohen, AndrewCommittee Chair
Cohen, Andrew
Metadata
Show full item recordPublisher
The University of Arizona.Rights
Copyright © is held by the author. Digital access to this material is made possible by the Antevs Library, Department of Geosciences, and the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author or the department.Abstract
We report the results of a detailed paleoecological study of the Bonneville Basin covering the last ~240,000 years. Our study used fossil ostracodes and a sedimentological record obtained from the August 2000 GLAD800 drilling operation at the Great Salt Lake. We analyzed 125 samples, taken at ~1 meter intervals from core GSL00-4, for ostracodes and other paleoecologic and sedimentological indicators of environmental change. Multivariate analyses applied to the ostracode data indicate an alternation between three major environments at the core site over the cored interval. The environments fluctuated most often between shallow saline, open -water lake conditions (when the lake was high enough to inundate the core site) and salt or freshwater, spring -fed marsh (when the water level was at or lower than the core site). But occasionally, the core site was submerged by deep fresh water. Immediately following deep lake phases, crashes in lake level from rapid desiccation resulted in the deposition of thick evaporite units. These environmental changes are consistent with shoreline studies of regional lake level fluctuations, but provide considerable new detail on both the timing and environmental conditions associated with the various lake phases. Our age model (using dates obtained from ¹⁴C, U- series, tephra and biostratigraphic chronologies) allowed us to associate the core's record of regional paleohydrology to the marine oxygen isotope stages record of global climate change. The core contains high resolution, continuous records for the last three glacial/interglacial sequences. In each case we found that fresh open-water conditions (i.e. lake highstands) correspond with maximum glacial advances, except for the smaller, less intense OIS 4 glaciation, when the lake remained saline. Salt and freshwater marshes were dominant environments for most of the interglacials. However, throughout most of the Quaternary, this basin has contained a shallow, saline open-water lake.Type
textThesis-Reproduction (electronic)
Degree Name
M.S.Degree Level
mastersDegree Program
Graduate CollegeGeosciences