• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Time-Space Variations in Mesozoic and Cenozoic Meteoric Waters, Southwestern North America

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_geo_0065_sip1_w.pdf
    Size:
    1.860Mb
    Format:
    PDF
    Download
    Author
    Becker, Jennifer L.
    Issue Date
    1999
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the Antevs Library, Department of Geosciences, and the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author or the department.
    Abstract
    Mesozoic and Cenozoic hydrothermal systems of the southwestern North American Cordillera contain a complex record from which meteoric water stable isotope compositions (δ¹⁸O and δ D) can be inferred. This record is therefore of interest as a proxy for climate. New analytical results combined with systematic review of isotopic values from more than 200 locations in the southwestern North American Cordillera show regular isotopic patterns in time and space. Jurassic isotopic ratios are high, and Late Cretaceous values are more negative. During the Oligocene, there is a transition to more negative values. The ancient dD values are higher from most locations when compared to younger and present day values. This enrichment is compatible with warmer climates in the past and with changes in tectonic environments and paleoelevation and paleolatitude estimates over the same time interval. Complications in the application of the data include uncertainties in the estimated temperatures, alteration ages, isotopic disequilibrium, and incorporation of multiple fluids.
    Type
    text
    Thesis-Reproduction (electronic)
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Graduate College
    Geosciences
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.