• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Fundamentals and Application of Porous Media Filtration for the Removal of Nanoparticles from Industrial Wastewater

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_12430_sip1_m.pdf
    Size:
    3.183Mb
    Format:
    PDF
    Download
    Author
    Rottman, Jeffrey J.
    Issue Date
    2012
    Keywords
    Porous Media
    Sand
    Silicon Dioxide
    Titanium Dioxide
    Chemical Engineering
    Diatomaceous Earth
    Nanoparticle
    Advisor
    Shadman, Farhang
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Increasing use of engineered nanomaterials presents concerns as some nanoparticles appear to be harmful to both human health and the environment. Effective treatment methods are required to remove problematic nanoparticles from (waste)water streams. Porous media filtration, commonly used for the removal of particulate matter, shows promise for nanoparticle treatment. The goal of this work is to investigate the potential of porous media filtration for the abatement of nanoparticles from aqueous waste streams. To this end, an automated method was developed that allows real-time and in-situ monitoring of nanoparticle transport and retention in porous media using online measurement of UV-visible absorbance or fluorescence. Development of fluorescent-core nano-silica (n-SiO₂) in controllable sizes provided an excellent tracer for nanoparticle transport in porous media. Measurement of n-SiO₂ by destructive techniques is complicated by high natural Si background levels. Fluorescence monitoring enables real-time measurement, facilitating rapid evaluation of n-SiO₂ transport. Synthesized n-SiO₂ remain in their primary sizes making an evaluation of the behavioral change of particles due to transition into the "nano" range possible. A comparison of the role of particle size on transport in porous media displayed the importance of particle number concentration as the dominance of site-specific adsorption may be obscured by simple mass concentration evaluation.T he effectiveness of different bed materials, namely, sand, activated carbon (AC), and diatomaceous earth (DE), for the removal of TiO₂ nanoparticles (n-TiO₂) from aqueous streams was investigated. DE proved promising for n-TiO₂ capture shown by its high bed capacity (33.8 mg TiO₂ g⁻¹(medium)) compared to AC (0.23 mg TiO₂ g⁻¹(medium)) or sand (0.004 mg TiO₂ g⁻¹(medium)). The presence of organic and synthetic contaminants produced varying effects on n-TiO₂ retention, mostly due to either enhanced electrostatic or steric interactions. Application of a process simulator combining physical straining with site-specific interactions, delineating physisorption from chemisorption and diffusion limited interactions, enabled the accurate fit of n-TiO₂ transport in sand, AC and DE. The fitting process revealed the advantage of DE due to increased physisorption and physical straining of n-TiO₂. Modeling of this system afforded the elucidation of controlling retention mechanisms and provides a basis for future scaling and system design.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Chemical Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.