Show simple item record

dc.contributor.authorBrown, Peter M.
dc.contributor.authorHughes, Malcolm K.
dc.contributor.authorBaisan, Christopher H.
dc.contributor.authorSwetnam, Thomas W.
dc.contributor.authorCaprio, Anthony C.
dc.date.accessioned2012-12-12T23:55:13Z
dc.date.available2012-12-12T23:55:13Z
dc.date.issued1992
dc.identifier.citationBrown, P.M., Hughes, M.K., Baisan, C.H., Swetnam, T.W., Caprio, A.C. 1992. Giant sequoia ring-width chronologies from the central Sierra Nevada, California. Tree-Ring Bulletin 52:1-14.en_US
dc.identifier.issn0041-2198
dc.identifier.urihttp://hdl.handle.net/10150/262342
dc.description.abstractGiant sequoia was one of the first species that A. E. Douglass examined in his pioneering tree- ring research. Recent attention to sequoia, stimulated by fire history studies in sequoia groves, has resulted in new ring-width chronologies based on both recently collected tree-ring material and Douglass' original samples. The development and characteristics of four new multimillennial sequoia chronologies are described here. Three of these chronologies are based on tree-ring series from individual sites: Camp Six (347 B.C. to A.D. 1989), Mountain Home (1094 B.C. to A.D. 1989), and Giant Forest (1235 B.C. to A.D. 1988). The fourth is a composite chronology (1235 B.C. to A.D. 1989) that includes radii from the other three chronologies. Sequoia ring series are generally complacent with occasional narrow rings ("signature years"). Ring-width standardization was complicated by growth releases, many of which are known to have been caused by fires. Such growth releases confuse climatic interpretation of low-frequency signals in the time series. Ring- width series were detrended with cubic splines with 50% frequency response function at 40 years to de-emphasize low-frequency variation and were fit with autoregressive time series models to remove persistence. The resulting prewhitened chronologies contain primarily a high frequency climate signal and are useful for assessing the past occurrence of extreme drought events and for dating applications. The dating chronology originally developed by Douglass is confirmed and the annual nature of giant sequoia tree rings unequivocally verified.
dc.language.isoen_USen_US
dc.publisherTree-Ring Societyen_US
dc.relation.urlhttp://www.treeringsociety.orgen_US
dc.rightsCopyright © Tree-Ring Society. All rights reserved.en_US
dc.subjectDendrochronologyen_US
dc.subjectTree Ringsen_US
dc.subjectDendroclimatologyen_US
dc.subjectDroughten_US
dc.subjectForest Firesen_US
dc.subjectForest Treesen_US
dc.subjectGrowth Ringsen_US
dc.subjectTreesen_US
dc.subjectWoody Plantsen_US
dc.titleGiant Sequoia Ring-Width Chronologies from the Central Sierra Nevada, Californiaen_US
dc.typeArticleen_US
dc.contributor.departmentLaboratory of Tree-Ring Research, University of Arizona, Tucson, Arizonaen_US
dc.identifier.journalTree-Ring Bulletinen_US
dc.description.collectioninformationThis item is part of the Tree-Ring Research (formerly Tree-Ring Bulletin) archive. It was digitized from a physical copy provided by the Laboratory of Tree-Ring research at The University of Arizona. For more information about this peer-reviewed scholarly journal, please email the Editor of Tree-Ring Research at editor@treeringsociety.org.en_US
refterms.dateFOA2018-08-26T23:34:12Z
html.description.abstractGiant sequoia was one of the first species that A. E. Douglass examined in his pioneering tree- ring research. Recent attention to sequoia, stimulated by fire history studies in sequoia groves, has resulted in new ring-width chronologies based on both recently collected tree-ring material and Douglass' original samples. The development and characteristics of four new multimillennial sequoia chronologies are described here. Three of these chronologies are based on tree-ring series from individual sites: Camp Six (347 B.C. to A.D. 1989), Mountain Home (1094 B.C. to A.D. 1989), and Giant Forest (1235 B.C. to A.D. 1988). The fourth is a composite chronology (1235 B.C. to A.D. 1989) that includes radii from the other three chronologies. Sequoia ring series are generally complacent with occasional narrow rings ("signature years"). Ring-width standardization was complicated by growth releases, many of which are known to have been caused by fires. Such growth releases confuse climatic interpretation of low-frequency signals in the time series. Ring- width series were detrended with cubic splines with 50% frequency response function at 40 years to de-emphasize low-frequency variation and were fit with autoregressive time series models to remove persistence. The resulting prewhitened chronologies contain primarily a high frequency climate signal and are useful for assessing the past occurrence of extreme drought events and for dating applications. The dating chronology originally developed by Douglass is confirmed and the annual nature of giant sequoia tree rings unequivocally verified.


Files in this item

Thumbnail
Name:
trb-52-001-014.pdf
Size:
265.2Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record