We are upgrading the repository! A content freeze is in effect until November 22nd, 2024 - no new submissions will be accepted; however, all content already published will remain publicly available. Please reach out to repository@u.library.arizona.edu with your questions, or if you are a UA affiliate who needs to make content available soon. Note that any new user accounts created after September 22, 2024 will need to be recreated by the user in November after our migration is completed.

Show simple item record

dc.contributor.advisorRilo, Horacioen_US
dc.contributor.authorVijayasekaran, Aparna
dc.creatorVijayasekaran, Aparnaen_US
dc.date.accessioned2013-01-14T17:44:49Z
dc.date.available2013-01-14T17:44:49Z
dc.date.issued2012
dc.identifier.urihttp://hdl.handle.net/10150/265352
dc.description.abstractGeneration of large volumes to cover an existing soft tissue defect is often complicated by the lack of available tissue. The current options for soft tissue reconstruction include local and free flaps, collagen fillers, traditional fat grafting and other synthetic soft tissue fillers. But they all have limitations. Recently, a lot of interest has been generated regarding the use of human adipose derived stem cells for engineering a biocompatible soft tissue construct. Give their ready availability, viability and plasticity they appear to be the ideal building blocks for a cell based soft tissue construct. We find that these cells are easy to isolate in large numbers, easy to maintain in culture and capable of multi-lineage differentiation. hASC's are readily adherent to collagen based scaffolds and these function as the ideal cell delivery matrix. Since most wound beds are ischemic and hypoxic, changes in gene expression of hASC's was studied in conditions of hypoxia and serum deprivation. Microarray PCR results demonstrate the up regulation of 23 angiogenic genes including VEGFC, ANPEP, CXCL6, ANGPLT4 and CXCL5 in conditions of hypoxia. However, this angiogenic response was blunted with the presence of serum starvation in addition to hypoxia. Hence we chose to investigate methods to increase the primary neovascularization of a tissue engineered construct. Our hypothesis was that Europium Nano rods (belonging to the lanthanide series of heavy metals) would increase the angiogenic potential of hASC's. Results of a chick embryo chorioallantoic membrane assay demonstrate that Europium Nano rods potentiate the angiogenic effects of Vascular Endothelial Growth Factor (VEGF) when incorporated in hASC's. These rods are readily incorporated in hASC's by endocytosis and do not affect viability. Hence, we conclude that Europium Nano rods can function as a reliable, nontoxic extrinsic angiogenic stimulus. Further studies are needed to evaluate the 1) effects of ENR's on stem cell plasticity 2) effects on gene expression and 3) further investigate the fate of ENR's with repeated cell division.
dc.language.isoenen_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.subjectMedical Sciencesen_US
dc.titleHuman Adipose Derived Stem Cells (hASC's) and Soft Tissue Reconstruction: Evaluation of Methods for Increasing the Vascularity of Tissue Engineered Soft Tissue Constructen_US
dc.typetexten_US
dc.typeElectronic Thesisen_US
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.levelmastersen_US
dc.contributor.committeememberMcDonagh, Paulen_US
dc.contributor.committeememberHeimark, Ronalden_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineMedical Sciencesen_US
thesis.degree.nameM.S.en_US
refterms.dateFOA2018-06-11T17:54:38Z
html.description.abstractGeneration of large volumes to cover an existing soft tissue defect is often complicated by the lack of available tissue. The current options for soft tissue reconstruction include local and free flaps, collagen fillers, traditional fat grafting and other synthetic soft tissue fillers. But they all have limitations. Recently, a lot of interest has been generated regarding the use of human adipose derived stem cells for engineering a biocompatible soft tissue construct. Give their ready availability, viability and plasticity they appear to be the ideal building blocks for a cell based soft tissue construct. We find that these cells are easy to isolate in large numbers, easy to maintain in culture and capable of multi-lineage differentiation. hASC's are readily adherent to collagen based scaffolds and these function as the ideal cell delivery matrix. Since most wound beds are ischemic and hypoxic, changes in gene expression of hASC's was studied in conditions of hypoxia and serum deprivation. Microarray PCR results demonstrate the up regulation of 23 angiogenic genes including VEGFC, ANPEP, CXCL6, ANGPLT4 and CXCL5 in conditions of hypoxia. However, this angiogenic response was blunted with the presence of serum starvation in addition to hypoxia. Hence we chose to investigate methods to increase the primary neovascularization of a tissue engineered construct. Our hypothesis was that Europium Nano rods (belonging to the lanthanide series of heavy metals) would increase the angiogenic potential of hASC's. Results of a chick embryo chorioallantoic membrane assay demonstrate that Europium Nano rods potentiate the angiogenic effects of Vascular Endothelial Growth Factor (VEGF) when incorporated in hASC's. These rods are readily incorporated in hASC's by endocytosis and do not affect viability. Hence, we conclude that Europium Nano rods can function as a reliable, nontoxic extrinsic angiogenic stimulus. Further studies are needed to evaluate the 1) effects of ENR's on stem cell plasticity 2) effects on gene expression and 3) further investigate the fate of ENR's with repeated cell division.


Files in this item

Thumbnail
Name:
azu_etd_12372_sip1_m.pdf
Size:
4.593Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record