• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Synthesis and Reactivity of New Organoboron Reagents and Development of New Methodologies for the Generation of Novel Drug-Like Scaffolds

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_12432_sip1_m.pdf
    Size:
    13.11Mb
    Format:
    PDF
    Download
    Author
    Bell, Christan Elizabeth
    Issue Date
    2012
    Keywords
    multicomponent reaction
    Chemistry
    cross-coupling
    Frustrated Lewis pairs
    Advisor
    Hulme, Christopher
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Embargo
    Release after 20-Dec-2013
    Abstract
    This research focused on the synthesis of novel ogranoboron reagents in efforts to perform a variety of synthetic transformations, and additionally, the development of new methodologies to generate drug-like scaffolds. Initially, three novel tripod ligands were synthesized, and two were effectively chelated to boron to provide the desired organoborates. Such organoborates were employed in nucleophilic additions where they were found to be ineffective, whereas some activity was observed in Suzuki-Miyaura cross-coupling reactions. An additional project on organoboron compounds was conducted and focused on the development of organoboron frustrated Lewis pairs (FLPs) to facilitate the storage and transfer of hydrogen, nucleophilic addition reactions, and Claisen rearrangements. A new method for synthesizing a pyrrolidine diol unit was accomplished, and this intermediate was utilized to synthesize two FLPs. The reactivity of the FLPs with small molecules was assessed, and the pyrrolidine diol unit was subsequently evaluated for its ability to undergo a multicomponent reaction (MCR) to yield compounds possessing beneficial biological activity. Further research in this area was conducted, and a 5-aminoimidazole scaffold was synthesized employing a new MCR which is more efficient than previously reported methodologies. 5-Aminoimidazoles are frequently found in compounds which possess desirable biological activity, and this novel method was employed to generate a library of eleven 5-aminoimidazoles. Additionally, two post condensation modification reactions were developed. During initial studies, a side product was observed which was identified as a dihydrotriazine, which is another biologically appealing chemotype. Therefore, an enhanced method of synthesizing this product was developed, and a library of eleven dihydrotriazines was produced. In summary, novel organoboron reagents were synthesized, and their activity was evaluated. The pyrrolidine diol utilized to synthesize FLPs was applied towards an MCR. Furthermore, a novel MCR was developed for the synthesis of 5-aminoimidazoles, and an enhanced protocol for the synthesis of dihydrotriazines was found.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Chemistry
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.