Show simple item record

dc.contributor.advisorCohen, Andrewen_US
dc.contributor.authorBlome, Margaret Whiting
dc.creatorBlome, Margaret Whitingen_US
dc.date.accessioned2013-01-15T19:08:49Z
dc.date.available2013-01-15T19:08:49Z
dc.date.issued2012
dc.identifier.urihttp://hdl.handle.net/10150/265558
dc.description.abstractAfrican climate changed considerably throughout the Pleistocene (2.588 million (Ma) to 12 thousand years ago (ka)). The timing, rate, and magnitude of past climate change across the continent impacted the evolutionary and migratory history of many mammalian species, including hominins. Investigating paleoclimatic variability through time at local and regional scales allows for an assessment of the extent to which climate change affected hominin evolution in Africa. This dissertation presents three approaches for increasing the understanding of past climate change in Africa. One method is to critically synthesize the existing literature of African climate (n=85) and hominid demography (n=64) over a restricted time frame (150 ka to 30 ka) and specific spatial scale (regional). Results from this study are two-fold: 1) climate change in Africa during this period was variable by region, responding to different climate-forcing mechanisms, and 2) changes in population and climate were asynchronous and likely created alternating opportunities for migration into adjacent regions, including hominin migrations out of Africa (~140-80 ka). The second approach is to evaluate modern ecological relationships between species and their environment to better quantify interpretations of paleoecological records. A modern distribution study of 33 ostracode species from 104 sites in the southwest arm of Lake Malawi suggest that depth-dependent variables likely define species niches. Relationships between ostracodes, fish and the green algae Botryococcus, were used to inform the paleoecological interpretations in the third study of this dissertation. Additional results suggest that macrocharcoal is likely delivered to the lake basin via river rather than wind-borne methods. The third approach involves primary analysis of climatic indicators from the sedimentary record to chronicle paleoecological and paleoenvironmental change at the basin scale through time. Results from a 380.7 meter-long sediment core recovered from Lake Malawi indicate a change of state likely caused by local tectonism, which affected ostracode assemblages, but had little effect on lake level history through time. Furthermore, the local hydroclimate of Lake Malawi alternately covaried with global glacial/interglacial cycles and local insolation maxima over the past 1.25 Ma. The magnitude and frequency of hydroclimatic variability in the watershed will be further assessed in future research.
dc.language.isoenen_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.subjectLake Malawien_US
dc.subjectOstracodeen_US
dc.subjectPleistoceneen_US
dc.subjectGeosciencesen_US
dc.subjectAfricaen_US
dc.subjectHominin dispersalen_US
dc.titleLacustrine Paleoecological Records and Modern Training Sets from Lake Malawi: Implications for African Paleoclimate and Connections to Human Prehistoryen_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.leveldoctoralen_US
dc.contributor.committeememberCole, Juliaen_US
dc.contributor.committeememberDavis, Owenen_US
dc.contributor.committeememberHolliday, Vanceen_US
dc.contributor.committeememberCohen, Andrewen_US
dc.description.releaseRelease after 05-Dec-2013en_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineGeosciencesen_US
thesis.degree.namePh.D.en_US
refterms.dateFOA2013-12-05T00:00:00Z
html.description.abstractAfrican climate changed considerably throughout the Pleistocene (2.588 million (Ma) to 12 thousand years ago (ka)). The timing, rate, and magnitude of past climate change across the continent impacted the evolutionary and migratory history of many mammalian species, including hominins. Investigating paleoclimatic variability through time at local and regional scales allows for an assessment of the extent to which climate change affected hominin evolution in Africa. This dissertation presents three approaches for increasing the understanding of past climate change in Africa. One method is to critically synthesize the existing literature of African climate (n=85) and hominid demography (n=64) over a restricted time frame (150 ka to 30 ka) and specific spatial scale (regional). Results from this study are two-fold: 1) climate change in Africa during this period was variable by region, responding to different climate-forcing mechanisms, and 2) changes in population and climate were asynchronous and likely created alternating opportunities for migration into adjacent regions, including hominin migrations out of Africa (~140-80 ka). The second approach is to evaluate modern ecological relationships between species and their environment to better quantify interpretations of paleoecological records. A modern distribution study of 33 ostracode species from 104 sites in the southwest arm of Lake Malawi suggest that depth-dependent variables likely define species niches. Relationships between ostracodes, fish and the green algae Botryococcus, were used to inform the paleoecological interpretations in the third study of this dissertation. Additional results suggest that macrocharcoal is likely delivered to the lake basin via river rather than wind-borne methods. The third approach involves primary analysis of climatic indicators from the sedimentary record to chronicle paleoecological and paleoenvironmental change at the basin scale through time. Results from a 380.7 meter-long sediment core recovered from Lake Malawi indicate a change of state likely caused by local tectonism, which affected ostracode assemblages, but had little effect on lake level history through time. Furthermore, the local hydroclimate of Lake Malawi alternately covaried with global glacial/interglacial cycles and local insolation maxima over the past 1.25 Ma. The magnitude and frequency of hydroclimatic variability in the watershed will be further assessed in future research.


Files in this item

Thumbnail
Name:
azu_etd_12453_sip1_m.pdf
Size:
4.755Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record