Investigation of Deterioration Mechanisms of Cellulose Acetate Compounded with Triphenyl Phosphate
Author
McGath, Molly KathleenIssue Date
2012Keywords
Raman spectroscopytriphenyl phosphate
Materials Science & Engineering
cellulose acetate
crystallization
Advisor
Odegaard, Nancy
Metadata
Show full item recordPublisher
The University of Arizona.Rights
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.Embargo
Release after 12-Dec-2014Abstract
The mechanisms of the deterioration of cellulose acetate compounded with triphenyl phosphate were investigated. A key peak shift of 726cm⁻¹ to 718cm⁻¹ in the Raman spectrum of triphenyl phosphate (726cm-1 uncompounded) when compounded in cellulose acetate (718cm⁻¹) was tied to the action of C-O bonds in triphenyl phosphate. The molecular bonds responsible for the 726cm⁻¹ peak were identified by collecting and examining spectra of chemicals with functional groups similar to triphenyl phosphate. Initially it was hypothesized that triphenyl phosphate acts as nucleophilic catalyst of deacetylation. This mechanism was evaluated by dissolving triphenyl phosphate in solvents that served as functional group analogues of cellulose acetate. These liquid-solution systems have a faster rate of reaction and complete mixing with triphenyl phosphate compared with what is seen in cellulose acetate solid-solution systems. The results of the cellulose acetate analogue experiments did not support the hypothesis of triphenyl phosphate acting as a nucleophilic catalyst of deacetylation. The results instead support a new theory of deterioration induced by the recrystallization of triphenyl phosphate. Additionally, the prevailing theory of triphenyl phosphate induced deterioration as proposed by Shinagawa et al. in 1992 was reviewed. The experiments conducted here do not support Shinagawa's theory.Type
textElectronic Dissertation
Degree Name
Ph.D.Degree Level
doctoralDegree Program
Graduate CollegeMaterials Science & Engineering