We are upgrading the repository! We will continue our upgrade in February 2025 - we have taken a break from the upgrade to open some collections for end-of-semester submission. The MS-GIST Master's Reports, SBE Senior Capstones, IPLP dissertations, and UA Faculty Publications collections are currently open for submission. Please reach out to repository@u.library.arizona.edu with your questions, or if you are a UA affiliate who needs to make content available in another collection.
Characterizing Non-Wetting Fluid in Natural Porous Media Using Synchrotron X-Ray Microtomography
Author
Narter, MatthewIssue Date
2012Keywords
Non-wetting FluidOrganic Liquid
Porous Media
X-ray Microtomography
Soil, Water & Environmental Science
Contaminant Hydrology
Interfacial Area
Advisor
Brusseau, Mark L.
Metadata
Show full item recordPublisher
The University of Arizona.Rights
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.Abstract
The objective of this study was to characterize non-wetting fluid in multi-phase systems comprising a range of fluid and porous medium properties. Synchrotron X-ray microtomography was used to obtain high-resolution, three-dimensional images of fluids in natural porous media. Images were processed to obtain quantitative measurements of fluid distribution, morphology, and interfacial area. Column-flooding experiments were conducted with four enhanced-solubilization (ES) solutions to examine their impact on entrapped organic liquid. Mobilization caused a change in organic-liquid morphology and distribution for most experiments. The effect of ES-solution flooding on fluid-fluid interfacial area was similar to that of water flooding. Organic-liquid mobilization was observed at total trapping numbers that were smaller than expected. This was attributed to pore-scale mobilization of blobs that were re-trapped prior to being eluted from the column. Pore-scale mobilization was also observed during water-flooding experiments for which trapping numbers varied over several orders of magnitude. Water-flooding and surfactant-flooding experiments were compared to investigate the impact of interfacial tension, viscosity, and fluid velocity on entrapped organic liquid. For similar total trapping numbers, flooding at larger velocities appeared to have a greater effect on the distribution of non-wetting blobs than lowering interfacial tension or increasing the viscosity of the wetting fluid. The fluid-normalized interfacial area was generally independent of the total trapping number. Finally, the impact of fluid type on the interfacial area between different pairs of non-wetting fluids was investigated during drainage and imbibition in four natural porous media. Interfacial areas were similar among all fluid pairs for a given porous medium. They were also similar for drainage and imbibition conditions. The maximum specific interfacial area (A(m)) was determined to quantify the magnitude of interfacial area associated with a given porous medium. The value of A(m) was larger for the media with smaller median grain diameters. Therefore, physical properties of the porous medium appear to have a greater influence on the magnitude of specific total interfacial area for a given saturation than fluid properties or wetting-phase history.Type
textElectronic Dissertation
Degree Name
Ph.D.Degree Level
doctoralDegree Program
Graduate CollegeSoil, Water and Environmental Science