• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A PARAMETRIC STUDY OF THE FREE VIBRATION CHARACTERISTICS OF ROTATING CANTILEVER BLADES.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_1321807_sip1_w.pdf
    Size:
    10.21Mb
    Format:
    PDF
    Download
    Author
    McGee, Oliver Gregory.
    Issue Date
    1983
    Keywords
    Turbomachines -- Blades -- Data processing.
    Turbomachines -- Vibration -- Data processing.
    Turbomachines -- Vibration -- Mathematical models.
    Vibration -- Data processing.
    Vibration -- Mathematical models.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Type
    text
    Thesis-Reproduction (electronic)
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Graduate College
    Engineering Mechanics
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      The effects of postural drainage, manual percussion and vibration versus postural drainage and mechanical vibration on maximal expiratory flows

      Hartsell, Marilyn Burke (The University of Arizona., 1978)
    • Thumbnail

      Vibrations in MagAO: frequency-based analysis of on-sky data, resonance sources identification, and future challenges in vibrations mitigation

      Zúñiga, Sebastián; Garcés, Javier; Close, Laird M.; Males, Jared R.; Morzinski, Katie M.; Escárate, Pedro; Castro, Mario; Marchioni, José; Zagals, Diego; Univ Arizona, Dept Astron, CAAO; et al. (SPIE-INT SOC OPTICAL ENGINEERING, 2016-07-27)
      Frequency-based analysis and comparisons of tip-tilt on-sky data registered with 6.5 Magellan Telescope Adaptive Optics (MagAO) system on April and Oct 2014 was performed. Twelve tests are conducted under different operation conditions in order to observe the influence of system instrumentation (such as fans, pumps and louvers). Vibration peaks can be detected, power spectral densities (PSDs) are presented to reveal their presence. Instrumentation-induced resonances, close-loop gain and future challenges in vibrations mitigation techniques are discussed.
    • Thumbnail

      Reliability quantification of plates subjected to random vibration and temperature loads

      Kececioglu, Dimitri B.; Zhang, Yongcang (The University of Arizona., 2000)
      Random vibration coupled with thermal cycling is a common environment for a lot of mechanical and electrical products, especially for those experiencing transportation and handling frequently. Today, random vibration plus thermal cycling have been broadly applied as an important stimulus stress to expose the latent defects during development. In addition, drop tests are also necessary for these products since an accidental drop may seriously damage them. Both random vibration and drop tests are expensive. Plate element is popular in portable and transportation related products, for example, the Printed Circuit Boards (PCBs) in equipment installed in vehicles, the Liquid Crystal Displays (LCDs) in portable computers and the skin panels near the engines in airplanes. These plate elements are subjected to random vibration and thermal cycling, and some of them may encounter a drop. Even through the deterministic vibration theory of plates has been developed a lot, the random vibration theory of plates has not been well explored yet, particularly in reliability quantification, response analysis, and thermal load effect. In this dissertation, a random vibration analysis model for packaged plates is proposed for base excited random vibration coupled with temperature loads. Based on this model, a reliability quantification model is proposed, too. Two common random vibration power spectral densities "Ideal White Noise (IWN)" and "Band Limited White Noise (BLWN)" are researched. As a result, the closed form solution for IWN is derived and the numerical procedure for BLWN is presented. By comparing the IWN results with the BLWN results, an application limit to IWN is discovered. The effects of temperature and damping on reliability are then investigated. For the drop load case, the response process and the reliability are researched, and the illustrative example is given to demonstrate the methodology. The research results of the dissertation may supply designers with guidelines and supplement testing with analytical data; therefore, the test cost can hopefully be cut down. The methodologies can be applied to the evaluation of transportation reliability.
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.