• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A systematic, experimental methodology for design optimization

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_1333422_sip1_w.pdf
    Size:
    3.258Mb
    Format:
    PDF
    Download
    Author
    Ritchie, Paul Andrew, 1960-
    Issue Date
    1988
    Keywords
    Taguchi methods (Quality control)
    Quality control -- Statistical methods.
    Engineering design -- Statistical methods.
    Advisor
    Askin, Ronald G.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Much attention has been directed at off-line quality control techniques in recent literature. This study is a refinement of and an enhancement to one technique, the Taguchi Method, for determining the optimum setting of design parameters in a product or process. In place of the signal-to-noise ratio, the mean square error (MSE) for each quality characteristic of interest is used. Polynomial models describing mean response and variance are fit to the observed data using statistical methods. The settings for the design parameters are determined by minimizing a statistical model. The model uses a multicriterion objective consisting of the MSE for each quality characteristic of interest. Minimum bias central composite designs are used during the data collection step to determine the settings of the parameters where observations are to be taken. Included is the development of minimum bias designs for various cases. A detailed example is given.
    Type
    text
    Thesis-Reproduction (electronic)
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Graduate College
    Systems and Industrial Engineering
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.