• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A finite element investigation of flow through an earth dam with open cracks using thin element technique

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_1335816_sip1_m.pdf
    Size:
    2.763Mb
    Format:
    PDF
    Download
    Author
    Elmore, Andrew Curtis, 1964-
    Issue Date
    1988
    Keywords
    Earth dams -- Design and construction.
    Seepage.
    Advisor
    Contractor, D. N.
    Desai, C. S.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The residual flow procedure (RFP) is used to conjunction with finite element method for solution of steady state free surface seepage in dams containing open cracks. The cracks are simulated using the thin-layer element concept. A comprehensive parametric study is performed to analyze the applicability of the numerical procedure with the thin layer element. Here, vertically trending as well as horizontally trending open cracks are considered with variable lengths, widths, and conductivities. It is found that the numerical results involve oscillatory, unstable, and physically unreasonable behavior beyond critical values of the geometry and conductivities. Here, the vertically trending configurations are found to be relatively more sensitive than the horizontally trending configurations. Although additional research will be needed to analyze other factors such as different crack geometries, transient flow, and different ratios of crack conductivities to surrounding soil conductivities, the results presented here suggest that the procedure can be applied for seepage analysis in dams containing open cracks.
    Type
    text
    Thesis-Reproduction (electronic)
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Graduate College
    Civil Engineering and Engineering Mechanics
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.