• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Development of a model for design of water harvesting systems in small scale rainfed agriculture

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_1338069_sip1_m.pdf
    Size:
    4.536Mb
    Format:
    PDF
    Download
    Author
    Cadot, Paule-Darly, 1960-
    Issue Date
    1989
    Keywords
    Water harvesting -- Arizona -- Computer simulation.
    Viticulture -- Arizona -- Santa Cruz County.
    Advisor
    Slack, Donald C.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    In arid and semi-arid regions, water harvesting systems can augment water supply for crop production purposes. The functioning of this type of system is controlled by three major factors: weather, crop and soil characteristics. In particular, the weather factors vary stochastiscally and thus, need to be predicted on the basis of their probability of occurrence. Furthermore, long-term historical data is scarce in the arid regions. Consequently, the simulation approach is a good alternative for designing the system. This study developed a micro-computer based model, SSWHS89.BAS, for design of small scale water harvesting systems for perennial crops. The model uses elements of a simulation computer program, CLIMATE.BAS (Woolhiser, 1988), to generate daily rainfall, maximum and minimum temperature and radiation data and predicts evapotranspiration and runoff data from a deterministic computer program, PENMNSCS.BAS for the location of interest. The model was used to determine the characteristics of a water harvesting system in a vineyard field at Sonoita, Az.
    Type
    text
    Thesis-Reproduction (electronic)
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Graduate College
    Agricultural Engineering
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.