Fluorescence and elastic scattering from laser dye-filled capillaries
Issue Date
1989Keywords
Electrophoresis -- Equipment and supplies -- Design.Dye lasers.
Fluorescence.
Elastic scattering.
Advisor
Bickel, William S.
Metadata
Show full item recordPublisher
The University of Arizona.Rights
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.Abstract
We investigated the elastic scattering and fluorescence from laser dye solutions inside 5000, 1100, and 96.5 micron inner-diameter hollow-core capillaries. Incident 4416 A laser illumination of Coumarin 7 dye dissolved in ethanol caused fluorescence from approximately 4600 to 6000 A. This was studied over an angular range from 0° to 360°. A light scattering nephelometer coupled with a spectrometer gave intensity measurements as functions of wavelength (at fixed detection angles) and angle (at fixed wavelengths), while the illumination source, dye-filled capillary, and detector remained stationary. We saw capillary size and detection-angle dependence of the fluorescence and elastic scattering. Results show that angular variations of the elastic scattering and emitted fluorescence can be used to determine an optimum detection angle from the capillary with respect to the incident illumination direction. This work is important in the design and execution of Capillary Zone Electrophoresis (CZE) experiments.Type
textThesis-Reproduction (electronic)
Degree Name
M.S.Degree Level
mastersDegree Program
Graduate CollegeOptical Sciences