• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Constitutive modeling of dilatant soils with associative kinematic hardening plasticity

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_1339880_sip1_m.pdf
    Size:
    3.010Mb
    Format:
    PDF
    Download
    Author
    Abdulla, Ali Abdulhussein, 1967-
    Issue Date
    1990
    Keywords
    Applied Mechanics.
    Geotechnology.
    Engineering, Civil.
    Advisor
    Kiousis, Panos D.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    In this study, a set of rules is established, which when implemented in the modeling of dilatant soils, within the framework of associative plasticity, enables very successful shear and dilatancy predictions. The proposed approach is based on a number of principles, the most important of which are: (1) The plasticity model must have a loading surface that hardens kinematically, and a failure surface that is perfectly plastic. (2) Experimental evidence shows that uniformly deformed sand samples dilate with a constant rate when they reach their ultimate strength value, while critical state is only achieved at very large strains. There is a unique point A on the loading surface that corresponds to the experimentally observed dilatation rate. The hardening rule must, therefore, ensure that the stress point approaches A as it approaches the failure surface. These principles are implemented in a plasticity model and compared to numerous published monotonic and cyclic tests, with varied stress paths, performed on a true triaxial apparatus. The agreement between experimental data and theoretical predictions is excellent.
    Type
    text
    Thesis-Reproduction (electronic)
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Graduate College
    Civil Engineering and Engineering Mechanics
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.