We are upgrading the repository! A content freeze is in effect until November 22nd, 2024 - no new submissions will be accepted; however, all content already published will remain publicly available. Please reach out to repository@u.library.arizona.edu with your questions, or if you are a UA affiliate who needs to make content available soon. Note that any new user accounts created after September 22, 2024 will need to be recreated by the user in November after our migration is completed.

Show simple item record

dc.contributor.advisorNeuman, Shlomo P.en_US
dc.contributor.authorVan Metre, Peter Chapman, 1956-
dc.creatorVan Metre, Peter Chapman, 1956-en_US
dc.date.accessioned2013-04-03T13:06:28Z
dc.date.available2013-04-03T13:06:28Z
dc.date.issued1990en_US
dc.identifier.urihttp://hdl.handle.net/10150/277926
dc.description.abstractThe Puerco River is an ephemeral stream that received effluent from uranium-mine dewatering operations from the 1950's until 1962 and from 1968 until mining ceased in 1986. Flow and water-quality relations between the Puerco River and the alluvial aquifer underlying it were investigated at a site near Chambers. Data collection included installing and sampling nine monitor wells and two drive points; monitoring stage and sampling surface water; and slug testing wells. The stream recharges the alluvial aquifer during periods of flow and the streambed is a location of ground-water discharge by evapotranspiration during periods of no flow. Discharge by evapotranspiration may exceed recharge thus reducing the potential for contaminant movement away from the river by advective transport. Geochemical modeling indicates that uranium minerals are undersaturated in the range in Eh observed. A +0.84 correlation was calculated relating dissolved uranium concentration to depth in monitor wells suggesting the stream is a source of uranium to the alluvial aquifer. (Abstract shortened with permission of author.)
dc.language.isoen_USen_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.subjectGeology.en_US
dc.subjectHydrology.en_US
dc.titleFlow and water quality relations between surface water and ground water in the Puerco River basin near Chambers, Arizonaen_US
dc.typetexten_US
dc.typeThesis-Reproduction (electronic)en_US
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.levelmastersen_US
dc.identifier.proquest1345384en_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineHydrology and Water Resourcesen_US
thesis.degree.nameM.S.en_US
dc.identifier.bibrecord.b27003516en_US
refterms.dateFOA2018-06-24T18:45:05Z
html.description.abstractThe Puerco River is an ephemeral stream that received effluent from uranium-mine dewatering operations from the 1950's until 1962 and from 1968 until mining ceased in 1986. Flow and water-quality relations between the Puerco River and the alluvial aquifer underlying it were investigated at a site near Chambers. Data collection included installing and sampling nine monitor wells and two drive points; monitoring stage and sampling surface water; and slug testing wells. The stream recharges the alluvial aquifer during periods of flow and the streambed is a location of ground-water discharge by evapotranspiration during periods of no flow. Discharge by evapotranspiration may exceed recharge thus reducing the potential for contaminant movement away from the river by advective transport. Geochemical modeling indicates that uranium minerals are undersaturated in the range in Eh observed. A +0.84 correlation was calculated relating dissolved uranium concentration to depth in monitor wells suggesting the stream is a source of uranium to the alluvial aquifer. (Abstract shortened with permission of author.)


Files in this item

Thumbnail
Name:
azu_td_1345384_sip1_m.pdf
Size:
2.478Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record