• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Stability investigations of a laminar wall jet using the complete Navier-Stokes equations

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_1346723_sip1_m.pdf
    Size:
    2.979Mb
    Format:
    PDF
    Download
    Author
    Majer, Clemens Philipp, 1963-
    Issue Date
    1991
    Keywords
    Applied Mechanics.
    Engineering, Aerospace.
    Physics, Fluid and Plasma.
    Advisor
    Fasel, Hermann F.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The hydrodynamic stability of a plane, two-dimensional, incompressible wall jet subjected to small disturbances is investigated by direct numerical integration of the complete Navier-Stokes equations. The numerical model allows growing or decaying of disturbances in the downstream direction as in physical experiments. In the past, various numerical investigations were published using the linear stability theory for the case of temporally growing disturbances. In this work, the investigations are made for the case of spatially growing disturbances. The neutral curves of the linear stability theory are displayed, and in addition, the downstream development of spatial growing disturbances is provided by using the complete Navier-Stokes equations. It is shown that the behavior of the disturbances is as predicted by the linear stability theory for a certain frequency using small disturbances. The changes in the downstream development of the flow subjected to large disturbances compared to the results using small disturbances is discussed. For large disturbance amplitudes, it was found that for the frequency of the disturbance waves used in the investigations the boundary layer mode clearly dominates the hydrodynamic stability.
    Type
    text
    Thesis-Reproduction (electronic)
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.