Short fiber composites with high electrical and thermal conductivity
Author
Freire, Ricardo Satuf, 1962-Issue Date
1992Advisor
Calvert, Paul
Metadata
Show full item recordPublisher
The University of Arizona.Rights
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.Abstract
This research describes the preparation of electrically and thermally conductive polymer composites. The filler used is short carbon fibers. These were dispersed in methyl methacrylate (MMA) and settled under different vibrational and gravitational forces, resulting in well packed sediments. To improve further the dispersability of the fiber/MMA system, steric stabilization was attempted by using organic dispersants of increasing chain length. Subsequent polymerization of the dense sediments produced composites with high fiber volume fractions. The electrical and thermal conductivities of these composites were studied. Fiber size, distribution, orientation and volume fraction are shown to have a profound influence on these properties. A general effective media equation, which relates percolation and effective media theories, is shown to describe the electrical conductivity of the composites. The specific thermal conductivity of the high fiber fraction composites is greater than that of stainless steel. Applications include electronic packaging and electromagnetic interference shielding.Type
textThesis-Reproduction (electronic)