Show simple item record

dc.contributor.advisorYeh, T.-C. Jimen_US
dc.contributor.authorMuller, Curtis Joseph, 1959-
dc.creatorMuller, Curtis Joseph, 1959-en_US
dc.date.accessioned2013-04-03T13:18:16Zen
dc.date.available2013-04-03T13:18:16Zen
dc.date.issued1992en_US
dc.identifier.urihttp://hdl.handle.net/10150/278254en
dc.description.abstractA problem common to many studies involving the use of unsaturated flow and chemical models is determining a representative expression for the value of unsaturated hydraulic conductivity K(ψ). A new steady-state inverse methodology called the multi-step steady-state outflow method (MSSOM) is presented here for the determination of unsaturated hydraulic conductivity. The method offers a practical alternative for the estimation of K(ψ) using either the exponential model, three-parameter model, or the van Genuchten formulations for K(ψ), a global-optimization simplex routine (MSSOM.EXE), and simple outflow data from a one-dimensional column experiment. The inverse technique was applied to a coarse sand and both the wetting an drying curves were well within the range of K(ψ) expected. Conductivity data from four other soils in the literature were then fitted using a curve fitting routine (RETC.F77) by van Genuchten, 1985 and compared to the inverse solution from the MSSOM model. The parameters for the K(ψ) expressions from both RETC and the MSSOM inverse model agreed well. Additional refinement of the multi-step steady-state outflow laboratory apparatus and the optimization program MSSOM.EXE are needed however to further improve the method.
dc.language.isoen_USen_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.subjectHydrology.en_US
dc.titleA multi-step steady-state inverse method for the determination of unsaturated hydraulic conductivity in soil columns: A new parameter estimation techniqueen_US
dc.typetexten_US
dc.typeThesis-Reproduction (electronic)en_US
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.levelmastersen_US
dc.identifier.proquest1351341en_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.nameM.S.en_US
dc.identifier.bibrecord.b26868209en_US
refterms.dateFOA2018-06-13T05:51:44Z
html.description.abstractA problem common to many studies involving the use of unsaturated flow and chemical models is determining a representative expression for the value of unsaturated hydraulic conductivity K(ψ). A new steady-state inverse methodology called the multi-step steady-state outflow method (MSSOM) is presented here for the determination of unsaturated hydraulic conductivity. The method offers a practical alternative for the estimation of K(ψ) using either the exponential model, three-parameter model, or the van Genuchten formulations for K(ψ), a global-optimization simplex routine (MSSOM.EXE), and simple outflow data from a one-dimensional column experiment. The inverse technique was applied to a coarse sand and both the wetting an drying curves were well within the range of K(ψ) expected. Conductivity data from four other soils in the literature were then fitted using a curve fitting routine (RETC.F77) by van Genuchten, 1985 and compared to the inverse solution from the MSSOM model. The parameters for the K(ψ) expressions from both RETC and the MSSOM inverse model agreed well. Additional refinement of the multi-step steady-state outflow laboratory apparatus and the optimization program MSSOM.EXE are needed however to further improve the method.


Files in this item

Thumbnail
Name:
azu_td_1351341_sip1_w.pdf
Size:
5.195Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record