Show simple item record

dc.contributor.advisorSzivek, John A.en_US
dc.contributor.authorCordaro, Nicholas Michael
dc.creatorCordaro, Nicholas Michaelen_US
dc.date.accessioned2013-04-03T13:34:33Z
dc.date.available2013-04-03T13:34:33Z
dc.date.issued2000en_US
dc.identifier.urihttp://hdl.handle.net/10150/278724
dc.description.abstractCalcium phosphate ceramic (CPC) coated strain gauges have been used for long term in vivo bone strain measurements but require 6 to 9 weeks for sufficient bonding. PepTite2000™, OP-1, TGF-β1, Ca₂SO₄·2H₂O, and an endothelial cell layer with and without TGF-β1 were examined as enhancements to accelerate bone to CPC bonding. Young male Sprague-Dawley rats were implanted with gauges for three weeks and calcein labeled. Following euthanasia, their femurs were explanted and mechanically tested. Histology was completed. Optical Coherence Tomography (OCT) was studied as an alternative to histology. A finite element analysis (FEA) examined bone to gauge strain transfer. Mechanical testing indicated increased sensing accuracy with TGF-β1 and OP-1 enhancements versus unenhanced gauges. PepTite2000™ and endothelial enhanced gauges displayed lower sensing accuracy and contained vasculature near CPC. TGF-β1 increased bonding with endothelial cells. Ca₂SO₄·2H₂O inhibited bone bonding. OCT unsuccessfully imaged bone to CPC contact. FEA identified geometric and material parameters for improved gauge design.
dc.language.isoen_USen_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.subjectEngineering, Biomedical.en_US
dc.titleAccelerated bone bonding to calcium phosphate ceramic coated strain gauges: An experimental and computational studyen_US
dc.typetexten_US
dc.typeThesis-Reproduction (electronic)en_US
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.levelmastersen_US
dc.identifier.proquest1399729en_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineBiomedical Engineeringen_US
thesis.degree.nameM.S.en_US
dc.identifier.bibrecord.b40638200en_US
refterms.dateFOA2018-07-18T00:52:52Z
html.description.abstractCalcium phosphate ceramic (CPC) coated strain gauges have been used for long term in vivo bone strain measurements but require 6 to 9 weeks for sufficient bonding. PepTite2000™, OP-1, TGF-β1, Ca₂SO₄·2H₂O, and an endothelial cell layer with and without TGF-β1 were examined as enhancements to accelerate bone to CPC bonding. Young male Sprague-Dawley rats were implanted with gauges for three weeks and calcein labeled. Following euthanasia, their femurs were explanted and mechanically tested. Histology was completed. Optical Coherence Tomography (OCT) was studied as an alternative to histology. A finite element analysis (FEA) examined bone to gauge strain transfer. Mechanical testing indicated increased sensing accuracy with TGF-β1 and OP-1 enhancements versus unenhanced gauges. PepTite2000™ and endothelial enhanced gauges displayed lower sensing accuracy and contained vasculature near CPC. TGF-β1 increased bonding with endothelial cells. Ca₂SO₄·2H₂O inhibited bone bonding. OCT unsuccessfully imaged bone to CPC contact. FEA identified geometric and material parameters for improved gauge design.


Files in this item

Thumbnail
Name:
azu_td_1399729_sip1_m.pdf
Size:
2.823Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record